Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 188881 by mnjuly1970 last updated on 08/Mar/23

      Q :  the non−zero vector a^→  = (a_1  , a_( 2)  , a_( 3)  ) with               the  coordinate axes makes the               angles  ,  α   ,  β  and   γ .  prove               that  the following equality.                 cos^( 2)  (α ) +cos^( 2)  (β  )+ cos^( 2)  ( γ )= 1

$$ \\ $$$$\:\:\:\:\mathrm{Q}\::\:\:\mathrm{the}\:\mathrm{non}−\mathrm{zero}\:\mathrm{vector}\:\overset{\rightarrow} {{a}}\:=\:\left({a}_{\mathrm{1}} \:,\:{a}_{\:\mathrm{2}} \:,\:{a}_{\:\mathrm{3}} \:\right)\:\mathrm{with} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{the}\:\:\mathrm{coordinate}\:\mathrm{axes}\:\mathrm{makes}\:\mathrm{the} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{angles}\:\:,\:\:\alpha\:\:\:,\:\:\beta\:\:\mathrm{and}\:\:\:\gamma\:.\:\:\mathrm{prove} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{that}\:\:\mathrm{the}\:\mathrm{following}\:\mathrm{equality}. \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{cos}^{\:\mathrm{2}} \:\left(\alpha\:\right)\:+\mathrm{cos}^{\:\mathrm{2}} \:\left(\beta\:\:\right)+\:\mathrm{cos}^{\:\mathrm{2}} \:\left(\:\gamma\:\right)=\:\mathrm{1} \\ $$$$ \\ $$$$ \\ $$

Answered by mr W last updated on 08/Mar/23

d=(√(a_1 ^2 +a_2 ^2 +a_3 ^2 ))  ⇒cos α=(a_1 /d)  ⇒cos β=(a_2 /d)  ⇒cos γ=(a_3 /d)  cos^2  α+cos^2  β+cos^2  γ=((a_1 ^2 +a_2 ^2 +a_3 ^2 )/d^2 )=1

$${d}=\sqrt{{a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} +{a}_{\mathrm{3}} ^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{cos}\:\alpha=\frac{{a}_{\mathrm{1}} }{{d}} \\ $$$$\Rightarrow\mathrm{cos}\:\beta=\frac{{a}_{\mathrm{2}} }{{d}} \\ $$$$\Rightarrow\mathrm{cos}\:\gamma=\frac{{a}_{\mathrm{3}} }{{d}} \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\alpha+\mathrm{cos}^{\mathrm{2}} \:\beta+\mathrm{cos}^{\mathrm{2}} \:\gamma=\frac{{a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} +{a}_{\mathrm{3}} ^{\mathrm{2}} }{{d}^{\mathrm{2}} }=\mathrm{1} \\ $$

Commented by mnjuly1970 last updated on 08/Mar/23

thanks alot sir W

$${thanks}\:{alot}\:{sir}\:{W} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com