Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 188819 by mnjuly1970 last updated on 07/Mar/23

         calculate                    lim_( x→ 0^( +) ) ( (√( cos ( (√x) ))) )^( cot( x ))  = ?

$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{calculate}\: \\ $$$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{lim}_{\:{x}\rightarrow\:\mathrm{0}^{\:+} } \left(\:\sqrt{\:\mathrm{cos}\:\left(\:\sqrt{{x}}\:\right)}\:\right)^{\:\mathrm{cot}\left(\:{x}\:\right)} \:=\:?\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$

Commented by mehdee42 last updated on 07/Mar/23

         calculate                    lim_( x→ 0^( +) ) ( (√( cos ( (√x) ))) )^( cot( x ))  = ?                  notic  if lim_(x→a) f(x)=1 & lim_(x→a) g(x)=∞  ⇒lim_(x→a) f(x)^(g(x)) =e^(lim_(x→a) (f(x)−1)g(x))   lim_(x→0^+ ) (((√(cos(√x)))−1)/(tanx))=^(hop) lim_(x→a) (((−sin(√x))/(2(√x)))/(2(1+tanx)(√(cos(√x)))))=−(1/4)  ⇒answr is : (1/( (e)^(1/4) ))

$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{calculate}\: \\ $$$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{lim}_{\:{x}\rightarrow\:\mathrm{0}^{\:+} } \left(\:\sqrt{\:\mathrm{cos}\:\left(\:\sqrt{{x}}\:\right)}\:\right)^{\:\mathrm{cot}\left(\:{x}\:\right)} \:=\:?\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$$${notic} \\ $$$${if}\:{lim}_{{x}\rightarrow{a}} {f}\left({x}\right)=\mathrm{1}\:\&\:{lim}_{{x}\rightarrow{a}} {g}\left({x}\right)=\infty \\ $$$$\Rightarrow{lim}_{{x}\rightarrow{a}} {f}\left({x}\right)^{{g}\left({x}\right)} ={e}^{{lim}_{{x}\rightarrow{a}} \left({f}\left({x}\right)−\mathrm{1}\right){g}\left({x}\right)} \\ $$$${lim}_{{x}\rightarrow\mathrm{0}^{+} } \frac{\sqrt{{cos}\sqrt{{x}}}−\mathrm{1}}{{tanx}}\overset{{hop}} {=}{lim}_{{x}\rightarrow{a}} \frac{\frac{−{sin}\sqrt{{x}}}{\mathrm{2}\sqrt{{x}}}}{\mathrm{2}\left(\mathrm{1}+{tanx}\right)\sqrt{{cos}\sqrt{{x}}}}=−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\Rightarrow{answr}\:{is}\::\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{4}}]{{e}}} \\ $$$$ \\ $$

Answered by mahdipoor last updated on 07/Mar/23

y=((√(cos((√x)))))^(cot(x)) =[cos((√x))]^((cot(x))/2)   ⇒ln(y)=((cot(x))/2)ln(cos((√x)))=((ln(cos((√x))))/(2tan(x)))  ⇒x→0^+    lim[ln(y)]=lim((ln(cos(√x)))/(2tan(x)))  ⇒=(0/0) , Hop ⇒=((((−sin((√x)))/(cos((√x)))).(1/(2(√x))))/(2/(cos^2 (x))))=  ((−cos^2 (x))/(4cos((√x))))×[((sin((√x)))/( (√x)))]=((−1)/4)×((sin(√x))/( (√x)))  ⇒hop ⇒((cos((√x))×(1/(2(√x))))/(1/(2(√x))))=cos(√x)=1  ⇒⇒lim    ln(y)=((−1)/4)×1  ⇒lim   y=(1/(^4 (√e)))  ...............Note:    get lim  x→c   ((f(x))/(g(x)))=   ,   f(c)=g(c)=0  ((f(x))/(g(x)))=k(x)((u(x))/(v(x)))  that   k(c)≠0,u(c)=v(c)=0  ⇒ hop ⇒ ((k^′ (c)u(c)+k(c)u^′ (c))/(v^′ (c)))=k(c)((u^′ (c))/(v^′ (c)))  ...............

$${y}=\left(\sqrt{{cos}\left(\sqrt{{x}}\right)}\right)^{{cot}\left({x}\right)} =\left[{cos}\left(\sqrt{{x}}\right)\right]^{\frac{{cot}\left({x}\right)}{\mathrm{2}}} \\ $$$$\Rightarrow{ln}\left({y}\right)=\frac{{cot}\left({x}\right)}{\mathrm{2}}{ln}\left({cos}\left(\sqrt{{x}}\right)\right)=\frac{{ln}\left({cos}\left(\sqrt{{x}}\right)\right)}{\mathrm{2}{tan}\left({x}\right)} \\ $$$$\Rightarrow{x}\rightarrow\mathrm{0}^{+} \:\:\:{lim}\left[{ln}\left({y}\right)\right]={lim}\frac{{ln}\left({cos}\sqrt{{x}}\right)}{\mathrm{2}{tan}\left({x}\right)} \\ $$$$\Rightarrow=\frac{\mathrm{0}}{\mathrm{0}}\:,\:{Hop}\:\Rightarrow=\frac{\frac{−{sin}\left(\sqrt{{x}}\right)}{{cos}\left(\sqrt{{x}}\right)}.\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}}{\frac{\mathrm{2}}{{cos}^{\mathrm{2}} \left({x}\right)}}= \\ $$$$\frac{−{cos}^{\mathrm{2}} \left({x}\right)}{\mathrm{4}{cos}\left(\sqrt{{x}}\right)}×\left[\frac{{sin}\left(\sqrt{{x}}\right)}{\:\sqrt{{x}}}\right]=\frac{−\mathrm{1}}{\mathrm{4}}×\frac{{sin}\sqrt{{x}}}{\:\sqrt{{x}}} \\ $$$$\Rightarrow{hop}\:\Rightarrow\frac{{cos}\left(\sqrt{{x}}\right)×\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}}{\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}}={cos}\sqrt{{x}}=\mathrm{1} \\ $$$$\Rightarrow\Rightarrow{lim}\:\:\:\:{ln}\left({y}\right)=\frac{−\mathrm{1}}{\mathrm{4}}×\mathrm{1}\:\:\Rightarrow{lim}\:\:\:{y}=\frac{\mathrm{1}}{\:^{\mathrm{4}} \sqrt{{e}}} \\ $$$$...............{Note}:\:\: \\ $$$${get}\:{lim}\:\:{x}\rightarrow{c}\:\:\:\frac{{f}\left({x}\right)}{{g}\left({x}\right)}=\:\:\:,\:\:\:{f}\left({c}\right)={g}\left({c}\right)=\mathrm{0} \\ $$$$\frac{{f}\left({x}\right)}{{g}\left({x}\right)}={k}\left({x}\right)\frac{{u}\left({x}\right)}{{v}\left({x}\right)}\:\:{that}\:\:\:{k}\left({c}\right)\neq\mathrm{0},{u}\left({c}\right)={v}\left({c}\right)=\mathrm{0} \\ $$$$\Rightarrow\:{hop}\:\Rightarrow\:\frac{{k}^{'} \left({c}\right){u}\left({c}\right)+{k}\left({c}\right){u}^{'} \left({c}\right)}{{v}^{'} \left({c}\right)}={k}\left({c}\right)\frac{{u}^{'} \left({c}\right)}{{v}^{'} \left({c}\right)} \\ $$$$............... \\ $$

Commented by mnjuly1970 last updated on 07/Mar/23

sepas ostad

$${sepas}\:{ostad} \\ $$

Answered by qaz last updated on 07/Mar/23

lim_(x→0^+ ) ((√(cos (√x))))^(cot x) =lim_(x→0^+ ) (1−(1/4)x+o(x))^(1/(x+o(x))) =e^(−4)

$$\underset{{x}\rightarrow\mathrm{0}^{+} } {{lim}}\left(\sqrt{\mathrm{cos}\:\sqrt{{x}}}\right)^{\mathrm{cot}\:{x}} =\underset{{x}\rightarrow\mathrm{0}^{+} } {{lim}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}{x}+{o}\left({x}\right)\right)^{\frac{\mathrm{1}}{{x}+{o}\left({x}\right)}} ={e}^{−\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com