Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 188774 by Shrinava last updated on 06/Mar/23

Answered by aleks041103 last updated on 09/Mar/23

Diagonlize A, i.e. A=P^(−1) DP, where D  is diagonal.  Now you can chose as many as you want  two more diagonal matrices D_1  and D_2 ,  such that  D^(2023) =D_1 ^(2023) +D_2 ^(2023) ⇒  P^(−1) D^(2023) P=P^(−1) D_1 ^(2023) P+P^(−1) D_2 ^(2023) P  Now notice that:  P^(−1) S^n P=P^(−1) SSS...SP=  =P^(−1) SPP^(−1) SPP^(−1) ....P^(−1) SP  =(P^(−1) SP)^n   ⇒(P^(−1) DP)^(2023) =A^(2023) =(P^(−1) D_1 P)^(2023) +(P^(−1) D_2 P)^(2023)   And now if B=P^(−1) D_1 P and C=P^(−1) D_2 P,  we have A^(2023) =B^(2023) +C^(2023.)   ⇒for every diagonal matrix D_1 , the matrices  B=P^(−1) D_1 P and C=P^(−1) ((D^(2023) −D_1 ^(2023) ))^(1/(2023)) P  satisfy  A^(2023) =B^(2023) +C^(2023)   where A=P^(−1) DP and D is diagonal.    P.S. A is dkaonlizable, since it is a symmetric  matrix with real entries.

$${Diagonlize}\:{A},\:{i}.{e}.\:{A}={P}^{−\mathrm{1}} {DP},\:{where}\:{D} \\ $$$${is}\:{diagonal}. \\ $$$${Now}\:{you}\:{can}\:{chose}\:{as}\:{many}\:{as}\:{you}\:{want} \\ $$$${two}\:{more}\:{diagonal}\:{matrices}\:{D}_{\mathrm{1}} \:{and}\:{D}_{\mathrm{2}} , \\ $$$${such}\:{that} \\ $$$${D}^{\mathrm{2023}} ={D}_{\mathrm{1}} ^{\mathrm{2023}} +{D}_{\mathrm{2}} ^{\mathrm{2023}} \Rightarrow \\ $$$${P}^{−\mathrm{1}} {D}^{\mathrm{2023}} {P}={P}^{−\mathrm{1}} {D}_{\mathrm{1}} ^{\mathrm{2023}} {P}+{P}^{−\mathrm{1}} {D}_{\mathrm{2}} ^{\mathrm{2023}} {P} \\ $$$${Now}\:{notice}\:{that}: \\ $$$${P}^{−\mathrm{1}} {S}^{{n}} {P}={P}^{−\mathrm{1}} {SSS}...{SP}= \\ $$$$={P}^{−\mathrm{1}} {SPP}^{−\mathrm{1}} {SPP}^{−\mathrm{1}} ....{P}^{−\mathrm{1}} {SP} \\ $$$$=\left({P}^{−\mathrm{1}} {SP}\right)^{{n}} \\ $$$$\Rightarrow\left({P}^{−\mathrm{1}} {DP}\right)^{\mathrm{2023}} ={A}^{\mathrm{2023}} =\left({P}^{−\mathrm{1}} {D}_{\mathrm{1}} {P}\right)^{\mathrm{2023}} +\left({P}^{−\mathrm{1}} {D}_{\mathrm{2}} {P}\right)^{\mathrm{2023}} \\ $$$${And}\:{now}\:{if}\:{B}={P}^{−\mathrm{1}} {D}_{\mathrm{1}} {P}\:{and}\:{C}={P}^{−\mathrm{1}} {D}_{\mathrm{2}} {P}, \\ $$$${we}\:{have}\:{A}^{\mathrm{2023}} ={B}^{\mathrm{2023}} +{C}^{\mathrm{2023}.} \\ $$$$\Rightarrow{for}\:{every}\:{diagonal}\:{matrix}\:{D}_{\mathrm{1}} ,\:{the}\:{matrices} \\ $$$${B}={P}^{−\mathrm{1}} {D}_{\mathrm{1}} {P}\:{and}\:{C}={P}^{−\mathrm{1}} \sqrt[{\mathrm{2023}}]{{D}^{\mathrm{2023}} −{D}_{\mathrm{1}} ^{\mathrm{2023}} }{P} \\ $$$${satisfy} \\ $$$${A}^{\mathrm{2023}} ={B}^{\mathrm{2023}} +{C}^{\mathrm{2023}} \\ $$$${where}\:{A}={P}^{−\mathrm{1}} {DP}\:{and}\:{D}\:{is}\:{diagonal}. \\ $$$$ \\ $$$${P}.{S}.\:{A}\:{is}\:{dkaonlizable},\:{since}\:{it}\:{is}\:{a}\:{symmetric} \\ $$$${matrix}\:{with}\:{real}\:{entries}. \\ $$

Commented by Shrinava last updated on 09/Mar/23

Dear professor, thank you very much  the for detailed explanation..  Let′s note how in response.?

$$\mathrm{Dear}\:\mathrm{professor},\:\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much} \\ $$$$\mathrm{the}\:\mathrm{for}\:\mathrm{detailed}\:\mathrm{explanation}.. \\ $$$$\mathrm{Let}'\mathrm{s}\:\mathrm{note}\:\mathrm{how}\:\mathrm{in}\:\mathrm{response}.? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com