Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 188621 by 073 last updated on 03/Mar/23

Answered by HeferH last updated on 04/Mar/23

(a/b) = (2/3) = ((2k)/(3k))   a^b  = b^a    (2k)^(3k)  = (3k)^(2k)    2^(3k) ∙k^(3k)  = 3^(2k) ∙k^(2k)    (2^3 )^k ∙(k^k )^3  = (3^2 )^k ∙(k^k )^2    8^k ∙k^k  = 9^k    k^k  = (9^k /8^k ) = ((9/8))^k  ⇒ k = (9/8)   b−a = 3k−2k = k = (9/8)

$$\frac{{a}}{{b}}\:=\:\frac{\mathrm{2}}{\mathrm{3}}\:=\:\frac{\mathrm{2}{k}}{\mathrm{3}{k}} \\ $$$$\:{a}^{{b}} \:=\:{b}^{{a}} \\ $$$$\:\left(\mathrm{2}{k}\right)^{\mathrm{3}{k}} \:=\:\left(\mathrm{3}{k}\right)^{\mathrm{2}{k}} \\ $$$$\:\mathrm{2}^{\mathrm{3}{k}} \centerdot{k}^{\mathrm{3}{k}} \:=\:\mathrm{3}^{\mathrm{2}{k}} \centerdot{k}^{\mathrm{2}{k}} \\ $$$$\:\left(\mathrm{2}^{\mathrm{3}} \right)^{{k}} \centerdot\left({k}^{{k}} \right)^{\mathrm{3}} \:=\:\left(\mathrm{3}^{\mathrm{2}} \right)^{{k}} \centerdot\left({k}^{{k}} \right)^{\mathrm{2}} \\ $$$$\:\mathrm{8}^{{k}} \centerdot{k}^{{k}} \:=\:\mathrm{9}^{{k}} \\ $$$$\:{k}^{{k}} \:=\:\frac{\mathrm{9}^{{k}} }{\mathrm{8}^{{k}} }\:=\:\left(\frac{\mathrm{9}}{\mathrm{8}}\right)^{{k}} \:\Rightarrow\:{k}\:=\:\frac{\mathrm{9}}{\mathrm{8}} \\ $$$$\:{b}−{a}\:=\:\mathrm{3}{k}−\mathrm{2}{k}\:=\:{k}\:=\:\frac{\mathrm{9}}{\mathrm{8}} \\ $$

Commented by 073 last updated on 03/Mar/23

nice solution

$$\mathrm{nice}\:\mathrm{solution} \\ $$

Answered by Frix last updated on 04/Mar/23

b=((3a)/2)  a^b =b^a   a^((3a)/2) =(((3a)/2))^a  ⇔ a^(3/2) =((3a)/2) ⇔ a^(1/2) =(3/2) ⇒ a=(9/4)  b−a=((3a)/2)−a=(a/2)=(9/8)

$${b}=\frac{\mathrm{3}{a}}{\mathrm{2}} \\ $$$${a}^{{b}} ={b}^{{a}} \\ $$$${a}^{\frac{\mathrm{3}{a}}{\mathrm{2}}} =\left(\frac{\mathrm{3}{a}}{\mathrm{2}}\right)^{{a}} \:\Leftrightarrow\:{a}^{\frac{\mathrm{3}}{\mathrm{2}}} =\frac{\mathrm{3}{a}}{\mathrm{2}}\:\Leftrightarrow\:{a}^{\frac{\mathrm{1}}{\mathrm{2}}} =\frac{\mathrm{3}}{\mathrm{2}}\:\Rightarrow\:{a}=\frac{\mathrm{9}}{\mathrm{4}} \\ $$$${b}−{a}=\frac{\mathrm{3}{a}}{\mathrm{2}}−{a}=\frac{{a}}{\mathrm{2}}=\frac{\mathrm{9}}{\mathrm{8}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com