Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 115401 by Khalmohmmad last updated on 25/Sep/20

∫((√x)/(x^2 +1))dx=?

$$\int\frac{\sqrt{\mathrm{x}}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx}=? \\ $$

Answered by Dwaipayan Shikari last updated on 25/Sep/20

2∫(t^2 /(t^4 +1))dt=∫(1/((t^2 −i)))+(1/(t^2 +i))=(1/(2(√i)))log(((t−(√i))/(t+(√i))))+(1/( (√i)))tan^(−1) (t/( (√i)))

$$\mathrm{2}\int\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{t}^{\mathrm{4}} +\mathrm{1}}\mathrm{dt}=\int\frac{\mathrm{1}}{\left(\mathrm{t}^{\mathrm{2}} −\mathrm{i}\right)}+\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} +\mathrm{i}}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{i}}}\mathrm{log}\left(\frac{\mathrm{t}−\sqrt{\mathrm{i}}}{\mathrm{t}+\sqrt{\mathrm{i}}}\right)+\frac{\mathrm{1}}{\:\sqrt{\mathrm{i}}}\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{t}}{\:\sqrt{\mathrm{i}}} \\ $$$$ \\ $$

Commented by Dwaipayan Shikari last updated on 25/Sep/20

Take limits  ∫_0 ^∞ ((2t^2 )/(t^4 +1))=[(1/(2(√i)))log(((t−(√i))/(t+(√i))))]_0 ^∞ +[(1/( (√i)))tan^(−1) (t/( (√i)))]_0 ^∞   =lim_(t→∞) (1/(2(√i)))log(((1−((√i)/t))/(1+((√i)/t))))−(1/(2(√i)))log(−1)=(1/(2(√i)))log(−1)  =0+(1/2)π(√i)            (−log(−1)=log(−1))  And  [(1/( (√i)))tan^(−1) (t/( (√i)))]_0 ^∞ =(π/(2(√i)))  (π/2)((√i)+(1/( (√i))))=(π/2)(((i+1)/( (√i))))=(π/2)(((i+1)/(1+i)).(√2))=(π/( (√2)))       (√i)=±((1+i)/( (√2)))  Which is Real

$$\mathrm{Take}\:\mathrm{limits} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{2t}^{\mathrm{2}} }{\mathrm{t}^{\mathrm{4}} +\mathrm{1}}=\left[\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{i}}}\mathrm{log}\left(\frac{\mathrm{t}−\sqrt{\mathrm{i}}}{\mathrm{t}+\sqrt{\mathrm{i}}}\right)\right]_{\mathrm{0}} ^{\infty} +\left[\frac{\mathrm{1}}{\:\sqrt{\mathrm{i}}}\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{t}}{\:\sqrt{\mathrm{i}}}\right]_{\mathrm{0}} ^{\infty} \\ $$$$=\underset{\mathrm{t}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{i}}}\mathrm{log}\left(\frac{\mathrm{1}−\frac{\sqrt{\mathrm{i}}}{\mathrm{t}}}{\mathrm{1}+\frac{\sqrt{\mathrm{i}}}{\mathrm{t}}}\right)−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{i}}}\mathrm{log}\left(−\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{i}}}\mathrm{log}\left(−\mathrm{1}\right) \\ $$$$=\mathrm{0}+\frac{\mathrm{1}}{\mathrm{2}}\pi\sqrt{\mathrm{i}}\:\:\:\:\:\:\:\:\:\:\:\:\left(−\mathrm{log}\left(−\mathrm{1}\right)=\mathrm{log}\left(−\mathrm{1}\right)\right) \\ $$$$\mathrm{And} \\ $$$$\left[\frac{\mathrm{1}}{\:\sqrt{\mathrm{i}}}\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{t}}{\:\sqrt{\mathrm{i}}}\right]_{\mathrm{0}} ^{\infty} =\frac{\pi}{\mathrm{2}\sqrt{\mathrm{i}}} \\ $$$$\frac{\pi}{\mathrm{2}}\left(\sqrt{\mathrm{i}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{i}}}\right)=\frac{\pi}{\mathrm{2}}\left(\frac{\mathrm{i}+\mathrm{1}}{\:\sqrt{\mathrm{i}}}\right)=\frac{\pi}{\mathrm{2}}\left(\frac{\mathrm{i}+\mathrm{1}}{\mathrm{1}+\mathrm{i}}.\sqrt{\mathrm{2}}\right)=\frac{\pi}{\:\sqrt{\mathrm{2}}}\:\:\:\:\:\:\:\sqrt{\mathrm{i}}=\pm\frac{\mathrm{1}+\mathrm{i}}{\:\sqrt{\mathrm{2}}} \\ $$$$\mathrm{Which}\:\mathrm{is}\:\mathrm{Real} \\ $$

Commented by Dwaipayan Shikari last updated on 25/Sep/20

It is also same as  ∫((√x)/(x^2 +1))dx=∫(√(tanθ)) dθ         θ=tan^(−1) x

$$\mathrm{It}\:\mathrm{is}\:\mathrm{also}\:\mathrm{same}\:\mathrm{as} \\ $$$$\int\frac{\sqrt{\mathrm{x}}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx}=\int\sqrt{\mathrm{tan}\theta}\:\mathrm{d}\theta\:\:\:\:\:\:\:\:\:\theta=\mathrm{tan}^{−\mathrm{1}} \mathrm{x} \\ $$

Answered by TANMAY PANACEA last updated on 25/Sep/20

x=k^2   ∫(k/(k^4 +1))×2kdk  ∫((2dk)/(k^2 +(1/k^2 )))  ∫((d(k+(1/k))+d(k−(1/k)))/(k^2 +(1/k^2 )))  ∫((d(k+(1/k)))/((k+(1/k))^2 −2))+∫((d(k−(1/k)))/((k−(1/k))^2 +2))  now use formula pls  ∫(dx/(x^2 −a^2 )) and ∫(dx/(x^2 +a^2 ))

$${x}={k}^{\mathrm{2}} \\ $$$$\int\frac{{k}}{{k}^{\mathrm{4}} +\mathrm{1}}×\mathrm{2}{kdk} \\ $$$$\int\frac{\mathrm{2}{dk}}{{k}^{\mathrm{2}} +\frac{\mathrm{1}}{{k}^{\mathrm{2}} }} \\ $$$$\int\frac{{d}\left({k}+\frac{\mathrm{1}}{{k}}\right)+{d}\left({k}−\frac{\mathrm{1}}{{k}}\right)}{{k}^{\mathrm{2}} +\frac{\mathrm{1}}{{k}^{\mathrm{2}} }} \\ $$$$\int\frac{{d}\left({k}+\frac{\mathrm{1}}{{k}}\right)}{\left({k}+\frac{\mathrm{1}}{{k}}\right)^{\mathrm{2}} −\mathrm{2}}+\int\frac{{d}\left({k}−\frac{\mathrm{1}}{{k}}\right)}{\left({k}−\frac{\mathrm{1}}{{k}}\right)^{\mathrm{2}} +\mathrm{2}} \\ $$$${now}\:{use}\:{formula}\:{pls} \\ $$$$\int\frac{{dx}}{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }\:{and}\:\int\frac{{dx}}{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com