Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 188492 by 073 last updated on 02/Mar/23

Commented by Rasheed.Sindhi last updated on 05/Mar/23

Is ′der′ means derivative?

$${Is}\:'{der}'\:{means}\:{derivative}? \\ $$

Commented by 073 last updated on 06/Mar/23

der is degree of polynomal

$$\mathrm{der}\:\mathrm{is}\:\mathrm{degree}\:\mathrm{of}\:\mathrm{polynomal} \\ $$

Answered by Rasheed.Sindhi last updated on 05/Mar/23

der[P(x)]=5⇒P(x)=5x+C  der[Q(x)]=4⇒Q(x)=4x+C  ((P(x)∙Q(x))/(P(x)+Q(x)))=(((5x+C)(4x+C))/((5x+C)+(4x+C)))  =((20x^2 +C)/(9x+C))  der(((P(x)∙Q(x))/(P(x)+Q(x))))=der(((20x^2 +C)/(9x+C)))  =(((9x)der(20x^2 )−(20x^2 )der(9x))/((9x)^2 ))  =(((9x)(40x)−(20x^2 )(9))/(81x^2 ))  =((360x^2 −180x^2 )/(81x^2 ))  =((180x^2 )/(81x^2 ))=((20)/9)

$${der}\left[{P}\left({x}\right)\right]=\mathrm{5}\Rightarrow{P}\left({x}\right)=\mathrm{5}{x}+{C} \\ $$$${der}\left[{Q}\left({x}\right)\right]=\mathrm{4}\Rightarrow{Q}\left({x}\right)=\mathrm{4}{x}+{C} \\ $$$$\frac{{P}\left({x}\right)\centerdot{Q}\left({x}\right)}{{P}\left({x}\right)+{Q}\left({x}\right)}=\frac{\left(\mathrm{5}{x}+{C}\right)\left(\mathrm{4}{x}+{C}\right)}{\left(\mathrm{5}{x}+{C}\right)+\left(\mathrm{4}{x}+{C}\right)} \\ $$$$=\frac{\mathrm{20}{x}^{\mathrm{2}} +{C}}{\mathrm{9}{x}+{C}} \\ $$$${der}\left(\frac{{P}\left({x}\right)\centerdot{Q}\left({x}\right)}{{P}\left({x}\right)+{Q}\left({x}\right)}\right)={der}\left(\frac{\mathrm{20}{x}^{\mathrm{2}} +{C}}{\mathrm{9}{x}+{C}}\right) \\ $$$$=\frac{\left(\mathrm{9}{x}\right){der}\left(\mathrm{20}{x}^{\mathrm{2}} \right)−\left(\mathrm{20}{x}^{\mathrm{2}} \right){der}\left(\mathrm{9}{x}\right)}{\left(\mathrm{9}{x}\right)^{\mathrm{2}} } \\ $$$$=\frac{\left(\mathrm{9}{x}\right)\left(\mathrm{40}{x}\right)−\left(\mathrm{20}{x}^{\mathrm{2}} \right)\left(\mathrm{9}\right)}{\mathrm{81}{x}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{360}{x}^{\mathrm{2}} −\mathrm{180}{x}^{\mathrm{2}} }{\mathrm{81}{x}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{180}{x}^{\mathrm{2}} }{\mathrm{81}{x}^{\mathrm{2}} }=\frac{\mathrm{20}}{\mathrm{9}} \\ $$

Commented by Rasheed.Sindhi last updated on 05/Mar/23

I′ve corrected my answer.Please  comment whether answer is ′ok′  or ′not ok′.

$${I}'{ve}\:{corrected}\:{my}\:{answer}.{Please} \\ $$$${comment}\:{whether}\:{answer}\:{is}\:'{ok}' \\ $$$${or}\:'{not}\:{ok}'. \\ $$

Commented by manxsol last updated on 05/Mar/23

C_(1     and     ) C_(2             )   not   C     and  C

$${C}_{\mathrm{1}\:\:\:\:\:{and}\:\:\:\:\:} {C}_{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:} \\ $$$${not}\:\:\:{C}\:\:\:\:\:{and}\:\:{C} \\ $$$$ \\ $$

Commented by 073 last updated on 06/Mar/23

no sir

$$\mathrm{no}\:\mathrm{sir} \\ $$

Commented by Rasheed.Sindhi last updated on 06/Mar/23

Above answer is in case ′der′ means  derivative.

$${Above}\:{answer}\:{is}\:{in}\:{case}\:'{der}'\:{means} \\ $$$${derivative}. \\ $$

Commented by Rasheed.Sindhi last updated on 06/Mar/23

@ manxsol  sir Will ′C_1  & C_2  instead of C ′ affect  the result?

$$@\:{manxsol} \\ $$$${sir}\:{Will}\:'{C}_{\mathrm{1}} \:\&\:{C}_{\mathrm{2}} \:{instead}\:{of}\:{C}\:'\:{affect} \\ $$$${the}\:{result}? \\ $$

Commented by manxsol last updated on 06/Mar/23

exercise initial is easy  der(((x^5 .x^4 )/(x^5 +x^4 )))=  der((x^9 /(x^5 +x^4 )))=9−5=4  you     [((PQ)/(P+Q))]′=  (((P+Q)[P ′Q+PQ′]−[P ′+Q ′)PQ)/((P+Q)^2 ))    ((P^ P ′Q+P^2 Q′+Q^2 P′^() ′+QQ′P^() −PP′Q−P^() QQ′)/((P+Q)^2 ))(/)  ((P^2 Q′+Q^2 P′)/((P+Q)^2 ))  P=5x+C_1   Q=4x+C_2   (((5x+C_1 )^2 (4)+(4x+C_2 )^2 5)/((9x+C_1 +C_2 )^2 ))  w  ((180x^2 +40x(C_1 +C_2 )+4C_1 ^2 +5C_2 ^2 )/(81x^2 +18x(C_1 +C_2 )+(C_1 ^2 +C_2 ^2 )))      sir Will ′C_1  & C_2  instead of C ′ affect  the result?

$${exercise}\:{initial}\:{is}\:{easy} \\ $$$${der}\left(\frac{{x}^{\mathrm{5}} .{x}^{\mathrm{4}} }{{x}^{\mathrm{5}} +{x}^{\mathrm{4}} }\right)= \\ $$$${der}\left(\frac{{x}^{\mathrm{9}} }{{x}^{\mathrm{5}} +{x}^{\mathrm{4}} }\right)=\mathrm{9}−\mathrm{5}=\mathrm{4} \\ $$$${you}\: \\ $$$$ \\ $$$$\left[\frac{{PQ}}{{P}+{Q}}\right]'= \\ $$$$\frac{\left({P}+{Q}\right)\left[{P}\:'{Q}+{PQ}'\right]−\left[{P}\:'+{Q}\:'\right){PQ}}{\left({P}+{Q}\right)^{\mathrm{2}} } \\ $$$$ \\ $$$$\frac{\cancel{\overset{} {{P}P}\:'{Q}}+{P}^{\mathrm{2}} {Q}'+{Q}^{\mathrm{2}} \overset{} {{P}'}'+\cancel{\overset{} {{QQ}'{P}}}−\cancel{{PP}'{Q}}−\cancel{\overset{} {{P}QQ}}'}{\left({P}+{Q}\right)^{\mathrm{2}} }\frac{}{} \\ $$$$\frac{{P}^{\mathrm{2}} {Q}'+{Q}^{\mathrm{2}} {P}'}{\left({P}+{Q}\right)^{\mathrm{2}} } \\ $$$${P}=\mathrm{5}{x}+{C}_{\mathrm{1}} \\ $$$${Q}=\mathrm{4}{x}+{C}_{\mathrm{2}} \\ $$$$\frac{\left(\mathrm{5}{x}+{C}_{\mathrm{1}} \right)^{\mathrm{2}} \left(\mathrm{4}\right)+\left(\mathrm{4}{x}+{C}_{\mathrm{2}} \right)^{\mathrm{2}} \mathrm{5}}{\left(\mathrm{9}{x}+{C}_{\mathrm{1}} +{C}_{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${w} \\ $$$$\frac{\mathrm{180}{x}^{\mathrm{2}} +\mathrm{40}{x}\left({C}_{\mathrm{1}} +{C}_{\mathrm{2}} \right)+\mathrm{4}{C}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{5}{C}_{\mathrm{2}} ^{\mathrm{2}} }{\mathrm{81}{x}^{\mathrm{2}} +\mathrm{18}{x}\left({C}_{\mathrm{1}} +{C}_{\mathrm{2}} \right)+\left({C}_{\mathrm{1}} ^{\mathrm{2}} +{C}_{\mathrm{2}} ^{\mathrm{2}} \right)} \\ $$$$ \\ $$$$ \\ $$$${sir}\:{Will}\:'{C}_{\mathrm{1}} \:\&\:{C}_{\mathrm{2}} \:{instead}\:{of}\:{C}\:'\:{affect} \\ $$$${the}\:{result}? \\ $$$$ \\ $$

Answered by Rasheed.Sindhi last updated on 06/Mar/23

If  ′der′ means degree of  poly nomial._    der[P(x)]=5 ,  der[Q(x)]=4  der[((P(x)∙Q(x))/(P(x)+Q(x)))]=?  Note that ((P(x)∙Q(x))/(P(x)+Q(x))) is polynomial  if [P(x)+Q(x)] ∣ P(x)∙Q(x)  Assuming above condition:  •N=der[P(x).Q(x)]=der[P(x)]+der[Q(x)]                       =5+4=9  •D=der[P(x)+Q(x)]=max( der[P(x)]+der[Q(x)] )             =max(5,4)=5  •der[(N/D)]=der(N)−der(D)                    =9−5=4

$$\underline{{If}\:\:'{der}'\:{means}\:{degree}\:{of}\:\:{poly}\:{nomial}._{\:} } \\ $$$${der}\left[{P}\left({x}\right)\right]=\mathrm{5}\:,\:\:{der}\left[{Q}\left({x}\right)\right]=\mathrm{4} \\ $$$${der}\left[\frac{{P}\left({x}\right)\centerdot{Q}\left({x}\right)}{{P}\left({x}\right)+{Q}\left({x}\right)}\right]=? \\ $$$${Note}\:{that}\:\frac{{P}\left({x}\right)\centerdot{Q}\left({x}\right)}{{P}\left({x}\right)+{Q}\left({x}\right)}\:{is}\:{polynomial} \\ $$$${if}\:\left[{P}\left({x}\right)+{Q}\left({x}\right)\right]\:\mid\:{P}\left({x}\right)\centerdot{Q}\left({x}\right) \\ $$$${Assuming}\:{above}\:{condition}: \\ $$$$\bullet{N}={der}\left[{P}\left({x}\right).{Q}\left({x}\right)\right]={der}\left[{P}\left({x}\right)\right]+{der}\left[{Q}\left({x}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{5}+\mathrm{4}=\mathrm{9} \\ $$$$\bullet{D}={der}\left[{P}\left({x}\right)+{Q}\left({x}\right)\right]={max}\left(\:{der}\left[{P}\left({x}\right)\right]+{der}\left[{Q}\left({x}\right)\right]\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:={max}\left(\mathrm{5},\mathrm{4}\right)=\mathrm{5} \\ $$$$\bullet{der}\left[\frac{{N}}{{D}}\right]={der}\left({N}\right)−{der}\left({D}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{9}−\mathrm{5}=\mathrm{4} \\ $$$$ \\ $$

Commented by 073 last updated on 06/Mar/23

nice solution sir

$$\mathrm{nice}\:\mathrm{solution}\:\mathrm{sir} \\ $$

Commented by Rasheed.Sindhi last updated on 06/Mar/23

Thank you for rapid response.

$$\mathcal{T}{hank}\:{you}\:{for}\:{rapid}\:{response}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com