Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 188218 by pascal889 last updated on 26/Feb/23

Answered by cortano12 last updated on 27/Feb/23

 let log _x 10=(1/(log _(10) x)) =p , x>0 ,x≠1  ⇒2.log _x 10−(1/2)[log _x (((√x)/(100)))]−((((1/2)))/(1−log _x 10))=−(7/2)  ⇒2p−(1/2)((1/2)−2p)−(1/(2−2p))=−(7/2)  ⇒4p−(1/2)+2p−(1/(4−4p)) =−7  ⇒6p−(1/(4−4p))=−((13)/2)  ⇒p=(((√(601))−1)/(24))   ⇒log _x (10)=(((√(601))−1)/(24))  ⇒(1/(log _(10) (x)))=(((√(601))−1)/( 24))  ⇒x=10^((24)/( (√(601))−1))

$$\:\mathrm{let}\:\mathrm{log}\:_{\mathrm{x}} \mathrm{10}=\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{10}} \mathrm{x}}\:=\mathrm{p}\:,\:\mathrm{x}>\mathrm{0}\:,\mathrm{x}\neq\mathrm{1} \\ $$$$\Rightarrow\mathrm{2}.\mathrm{log}\:_{\mathrm{x}} \mathrm{10}−\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{log}\:_{\mathrm{x}} \left(\frac{\sqrt{\mathrm{x}}}{\mathrm{100}}\right)\right]−\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{1}−\mathrm{log}\:_{\mathrm{x}} \mathrm{10}}=−\frac{\mathrm{7}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2p}−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2p}\right)−\frac{\mathrm{1}}{\mathrm{2}−\mathrm{2p}}=−\frac{\mathrm{7}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4p}−\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2p}−\frac{\mathrm{1}}{\mathrm{4}−\mathrm{4p}}\:=−\mathrm{7} \\ $$$$\Rightarrow\mathrm{6p}−\frac{\mathrm{1}}{\mathrm{4}−\mathrm{4p}}=−\frac{\mathrm{13}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{p}=\frac{\sqrt{\mathrm{601}}−\mathrm{1}}{\mathrm{24}}\: \\ $$$$\Rightarrow\mathrm{log}\:_{\mathrm{x}} \left(\mathrm{10}\right)=\frac{\sqrt{\mathrm{601}}−\mathrm{1}}{\mathrm{24}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{log}\:_{\mathrm{10}} \left(\mathrm{x}\right)}=\frac{\sqrt{\mathrm{601}}−\mathrm{1}}{\:\mathrm{24}} \\ $$$$\Rightarrow\mathrm{x}=\mathrm{10}^{\frac{\mathrm{24}}{\:\sqrt{\mathrm{601}}−\mathrm{1}}} \: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com