Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 188170 by mnjuly1970 last updated on 26/Feb/23

        solve     ⌊ cos (x )⌋ + ⌊ cos(x) +(1/2) ⌋+ ⌊ −2cosx ⌋ =0

$$ \\ $$$$\:\:\:\:\:\:{solve} \\ $$$$ \\ $$$$\:\lfloor\:{cos}\:\left({x}\:\right)\rfloor\:+\:\lfloor\:{cos}\left({x}\right)\:+\frac{\mathrm{1}}{\mathrm{2}}\:\rfloor+\:\lfloor\:−\mathrm{2}{cosx}\:\rfloor\:=\mathrm{0} \\ $$$$ \\ $$

Answered by Frix last updated on 26/Feb/23

Let f(t)=⌊t⌋+⌊t+(1/2)⌋+⌊−2t⌋  Let T={(n/2)∣n∈Z}  It′s easy to see  f(t)= { ((0; t∈T)),((−1; t∈R\T)) :}  Let t=cos x ⇒ −1≤t<1 ⇒  f(t)=0 ⇔ t=cos x ∈{−1, −(1/2), 0, (1/2), 1}  The rest is easy

$$\mathrm{Let}\:{f}\left({t}\right)=\lfloor{t}\rfloor+\lfloor{t}+\frac{\mathrm{1}}{\mathrm{2}}\rfloor+\lfloor−\mathrm{2}{t}\rfloor \\ $$$$\mathrm{Let}\:\mathbb{T}=\left\{\frac{{n}}{\mathrm{2}}\mid{n}\in\mathbb{Z}\right\} \\ $$$$\mathrm{It}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{see} \\ $$$${f}\left({t}\right)=\begin{cases}{\mathrm{0};\:{t}\in\mathbb{T}}\\{−\mathrm{1};\:{t}\in\mathbb{R}\backslash\mathbb{T}}\end{cases} \\ $$$$\mathrm{Let}\:{t}=\mathrm{cos}\:{x}\:\Rightarrow\:−\mathrm{1}\leqslant{t}<\mathrm{1}\:\Rightarrow \\ $$$${f}\left({t}\right)=\mathrm{0}\:\Leftrightarrow\:{t}=\mathrm{cos}\:{x}\:\in\left\{−\mathrm{1},\:−\frac{\mathrm{1}}{\mathrm{2}},\:\mathrm{0},\:\frac{\mathrm{1}}{\mathrm{2}},\:\mathrm{1}\right\} \\ $$$$\mathrm{The}\:\mathrm{rest}\:\mathrm{is}\:\mathrm{easy} \\ $$

Commented by mnjuly1970 last updated on 27/Feb/23

thx alot   tidomebon sir...

$${thx}\:{alot}\: \\ $$$${tidomebon}\:{sir}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com