Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 188164 by cortano12 last updated on 26/Feb/23

Commented by cortano12 last updated on 01/Mar/23

if x=1⇒f(3)+f(1)=1  if x=−1⇒f(1)+f(3)=−1  ⇒1=−1?

$$\mathrm{if}\:\mathrm{x}=\mathrm{1}\Rightarrow\mathrm{f}\left(\mathrm{3}\right)+\mathrm{f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$$\mathrm{if}\:\mathrm{x}=−\mathrm{1}\Rightarrow\mathrm{f}\left(\mathrm{1}\right)+\mathrm{f}\left(\mathrm{3}\right)=−\mathrm{1} \\ $$$$\Rightarrow\mathrm{1}=−\mathrm{1}?\: \\ $$

Answered by mr W last updated on 26/Feb/23

∫_0 ^4 f(x)dx  =∫_0 ^2 f(x)dx+∫_2 ^4 f(x)dx  =∫_(−2) ^0 f(t+2)dt−∫_0 ^(−2) f(2−t)dt  =∫_(−2) ^0 f(t+2)dt+∫_(−2) ^0 f(2−t)dt  =∫_(−2) ^0 [f(t+2)+f(2−t)]dt  =∫_(−2) ^0 t^(5001) d(t)  =[(t^(5002) /(5002))]_(−2) ^0   =−(2^(5002) /(5002))

$$\int_{\mathrm{0}} ^{\mathrm{4}} {f}\left({x}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}} {f}\left({x}\right){dx}+\int_{\mathrm{2}} ^{\mathrm{4}} {f}\left({x}\right){dx} \\ $$$$=\int_{−\mathrm{2}} ^{\mathrm{0}} {f}\left({t}+\mathrm{2}\right){dt}−\int_{\mathrm{0}} ^{−\mathrm{2}} {f}\left(\mathrm{2}−{t}\right){dt} \\ $$$$=\int_{−\mathrm{2}} ^{\mathrm{0}} {f}\left({t}+\mathrm{2}\right){dt}+\int_{−\mathrm{2}} ^{\mathrm{0}} {f}\left(\mathrm{2}−{t}\right){dt} \\ $$$$=\int_{−\mathrm{2}} ^{\mathrm{0}} \left[{f}\left({t}+\mathrm{2}\right)+{f}\left(\mathrm{2}−{t}\right)\right]{dt} \\ $$$$=\int_{−\mathrm{2}} ^{\mathrm{0}} {t}^{\mathrm{5001}} {d}\left({t}\right) \\ $$$$=\left[\frac{{t}^{\mathrm{5002}} }{\mathrm{5002}}\right]_{−\mathrm{2}} ^{\mathrm{0}} \\ $$$$=−\frac{\mathrm{2}^{\mathrm{5002}} }{\mathrm{5002}} \\ $$

Commented by cortano12 last updated on 26/Feb/23

yes nice

$$\mathrm{yes}\:\mathrm{nice} \\ $$

Commented by cortano12 last updated on 01/Mar/23

 but sir no possible of function f(x)?

$$\:\mathrm{but}\:\mathrm{sir}\:\mathrm{no}\:\mathrm{possible}\:\mathrm{of}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)?\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com