Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 188107 by pascal889 last updated on 25/Feb/23

Answered by CElcedricjunior last updated on 25/Feb/23

((x/(x−2)))^2 +((x/(x+2)))^2 =2   ∃ssi x≠−2 et x≠2  =>x^2 (x^2 +4x+4)+x^2 (x^2 −4x+4)=2(x^4 −8x^2 +16)★Moivre  =>8x^2 =32−16x^2 ★Cedric junior  =>24x^2 =32=>x=∓(√(4/3))=∓((2(√3))/3)  S_R ={−((2(√3))/3);((2(√3))/3)}

$$\left(\frac{\boldsymbol{{x}}}{\boldsymbol{{x}}−\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\boldsymbol{{x}}}{\boldsymbol{{x}}+\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{2}\: \\ $$$$\exists\boldsymbol{{ssi}}\:\boldsymbol{{x}}\neq−\mathrm{2}\:\boldsymbol{{et}}\:\boldsymbol{{x}}\neq\mathrm{2} \\ $$$$=>\boldsymbol{{x}}^{\mathrm{2}} \left(\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{4}\boldsymbol{{x}}+\mathrm{4}\right)+\boldsymbol{{x}}^{\mathrm{2}} \left(\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}\right)=\mathrm{2}\left(\boldsymbol{{x}}^{\mathrm{4}} −\mathrm{8}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{16}\right)\bigstar{Moivre} \\ $$$$=>\mathrm{8}\boldsymbol{{x}}^{\mathrm{2}} =\mathrm{32}−\mathrm{16}\boldsymbol{{x}}^{\mathrm{2}} \bigstar\mathscr{C}{edric}\:{junior} \\ $$$$=>\mathrm{24}\boldsymbol{{x}}^{\mathrm{2}} =\mathrm{32}=>\boldsymbol{{x}}=\mp\sqrt{\frac{\mathrm{4}}{\mathrm{3}}}=\mp\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$${S}_{\mathbb{R}} =\left\{−\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}};\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\right\} \\ $$$$ \\ $$

Answered by otchereabdullai last updated on 25/Feb/23

   ((x/(x−2)))((x/(x−2)))+((x/(x+2)))((x/(x+2)))=2   (x^2 /(x(x−2)−2(x−2))) + (x^2 /(x(x+2)+2(x+2)))=2  (x^2 /(x^2 −2x−2x+4)) + (x^2 /(x^2 +2x+2x+4))=2  (x^2 /(x^2 −4x+4)) + (x^2 /(x^2 +4x+4))=2   lcm=(x^2 −4x+4)(x^2 +4x+4)  multiply through by the lcm we have  x^2 (x^2 +4x+4)+x^2 (x^2 −4x+4)=2[(x^2 −4x+4)(x^2 +4x+4)]  expand and cancil opposite like terms  we have −32x^2 +8x+32=0    −24x^2 +32=0    −24x^2 =−32     24x^2 =32          x^2 =((32)/(24))          x=±(√((32)/(24)))           x=±((4(√2))/(2(√6)))            x=±((2(√3))/3)

$$\:\:\:\left(\frac{{x}}{{x}−\mathrm{2}}\right)\left(\frac{{x}}{{x}−\mathrm{2}}\right)+\left(\frac{{x}}{{x}+\mathrm{2}}\right)\left(\frac{{x}}{{x}+\mathrm{2}}\right)=\mathrm{2} \\ $$$$\:\frac{{x}^{\mathrm{2}} }{{x}\left({x}−\mathrm{2}\right)−\mathrm{2}\left({x}−\mathrm{2}\right)}\:+\:\frac{{x}^{\mathrm{2}} }{{x}\left({x}+\mathrm{2}\right)+\mathrm{2}\left({x}+\mathrm{2}\right)}=\mathrm{2} \\ $$$$\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{2}{x}+\mathrm{4}}\:+\:\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}{x}+\mathrm{4}}=\mathrm{2} \\ $$$$\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}}\:+\:\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}}=\mathrm{2} \\ $$$$\:{lcm}=\left({x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}\right)\left({x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}\right) \\ $$$${multiply}\:{through}\:{by}\:{the}\:{lcm}\:{we}\:{have} \\ $$$${x}^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}\right)+{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}\right)=\mathrm{2}\left[\left({x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}\right)\left({x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}\right)\right] \\ $$$${expand}\:{and}\:{cancil}\:{opposite}\:{like}\:{terms} \\ $$$${we}\:{have}\:−\mathrm{32}{x}^{\mathrm{2}} +\mathrm{8}{x}+\mathrm{32}=\mathrm{0} \\ $$$$\:\:−\mathrm{24}{x}^{\mathrm{2}} +\mathrm{32}=\mathrm{0} \\ $$$$\:\:−\mathrm{24}{x}^{\mathrm{2}} =−\mathrm{32} \\ $$$$\:\:\:\mathrm{24}{x}^{\mathrm{2}} =\mathrm{32} \\ $$$$\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} =\frac{\mathrm{32}}{\mathrm{24}} \\ $$$$\:\:\:\:\:\:\:\:{x}=\pm\sqrt{\frac{\mathrm{32}}{\mathrm{24}}} \\ $$$$\:\:\:\:\:\:\:\:\:{x}=\pm\frac{\mathrm{4}\sqrt{\mathrm{2}}}{\mathrm{2}\sqrt{\mathrm{6}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:{x}=\pm\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com