Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 187963 by Humble last updated on 24/Feb/23

solve for y  if  2y+2^y^2  +y^3 +4y=9

$${solve}\:{for}\:{y}\:\:{if} \\ $$$$\mathrm{2}{y}+\mathrm{2}^{{y}^{\mathrm{2}} } +{y}^{\mathrm{3}} +\mathrm{4}{y}=\mathrm{9} \\ $$

Answered by a.lgnaoui last updated on 24/Feb/23

6y+2^y^2  +y^3 =9  y(y^2 +6)+2^y^2  =9  y^2 +6+(2^y^2  /y)=(9/y)  y^2 +6=(1/y)(9−2^y^2  )⇒  (y^2 +6)^2 =(1/y^2 )(9−2^y^2  )^2   z=y^2      (z+6+((9−2^z )/z))(z+6−((9−2^z )/z))=0  ⇒  (z+3)^2 −2^z     =0      (1)  z^2 +6z−9+2^z =0      (2)  (1)+(2)⇒  (z+3)^2 +z^2 +6z−9=0  2z(z+6)=0          { (((z+3)^2                  =2^z )),(((z+3)^2 −18+2^z =0)) :}      (suite)    (z+3)^2 =2^z     zlog2=2log(z+3)  [(z+3) −3]log2 =log(z+3)  z+3=t  (t−3)log2=logt  tlog2−logt=3log2  log((2^t /t) )=log(2^3 )        (2^t /t)=2^3          (2^(y^2 +3) /(y^2 +3))=2^3 =2^3 (2^y^2  /(y^2 +3))      (2^y^2  /(y^2 +3))=1⇒2^y^2  =y^2 +3           Solution={−1;+1}

$$\mathrm{6}{y}+\mathrm{2}^{{y}^{\mathrm{2}} } +{y}^{\mathrm{3}} =\mathrm{9} \\ $$$${y}\left({y}^{\mathrm{2}} +\mathrm{6}\right)+\mathrm{2}^{{y}^{\mathrm{2}} } =\mathrm{9} \\ $$$${y}^{\mathrm{2}} +\mathrm{6}+\frac{\mathrm{2}^{{y}^{\mathrm{2}} } }{{y}}=\frac{\mathrm{9}}{{y}} \\ $$$${y}^{\mathrm{2}} +\mathrm{6}=\frac{\mathrm{1}}{{y}}\left(\mathrm{9}−\mathrm{2}^{{y}^{\mathrm{2}} } \right)\Rightarrow \\ $$$$\left({y}^{\mathrm{2}} +\mathrm{6}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{{y}^{\mathrm{2}} }\left(\mathrm{9}−\mathrm{2}^{{y}^{\mathrm{2}} } \right)^{\mathrm{2}} \\ $$$${z}={y}^{\mathrm{2}} \\ $$$$\:\:\:\left({z}+\mathrm{6}+\frac{\mathrm{9}−\mathrm{2}^{{z}} }{{z}}\right)\left({z}+\mathrm{6}−\frac{\mathrm{9}−\mathrm{2}^{{z}} }{{z}}\right)=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\left({z}+\mathrm{3}\right)^{\mathrm{2}} −\mathrm{2}^{{z}} \:\:\:\:=\mathrm{0}\:\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$${z}^{\mathrm{2}} +\mathrm{6}{z}−\mathrm{9}+\mathrm{2}^{{z}} =\mathrm{0}\:\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)+\left(\mathrm{2}\right)\Rightarrow \\ $$$$\left({z}+\mathrm{3}\right)^{\mathrm{2}} +{z}^{\mathrm{2}} +\mathrm{6}{z}−\mathrm{9}=\mathrm{0} \\ $$$$\mathrm{2}{z}\left({z}+\mathrm{6}\right)=\mathrm{0}\:\:\:\:\:\:\: \\ $$$$\begin{cases}{\left({z}+\mathrm{3}\right)^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}^{{z}} }\\{\left({z}+\mathrm{3}\right)^{\mathrm{2}} −\mathrm{18}+\mathrm{2}^{{z}} =\mathrm{0}}\end{cases} \\ $$$$\:\:\:\:\left({suite}\right) \\ $$$$ \\ $$$$\left({z}+\mathrm{3}\right)^{\mathrm{2}} =\mathrm{2}^{{z}} \:\: \\ $$$${z}\mathrm{log2}=\mathrm{2log}\left(\mathrm{z}+\mathrm{3}\right) \\ $$$$\left[\left(\mathrm{z}+\mathrm{3}\right)\:−\mathrm{3}\right]\mathrm{log2}\:=\mathrm{log}\left(\mathrm{z}+\mathrm{3}\right) \\ $$$$\mathrm{z}+\mathrm{3}=\mathrm{t} \\ $$$$\left(\mathrm{t}−\mathrm{3}\right)\mathrm{log2}=\mathrm{logt} \\ $$$$\mathrm{tlog2}−\mathrm{logt}=\mathrm{3log2} \\ $$$$\mathrm{log}\left(\frac{\mathrm{2}^{\mathrm{t}} }{\mathrm{t}}\:\right)=\mathrm{log}\left(\mathrm{2}^{\mathrm{3}} \right) \\ $$$$\:\:\:\:\:\:\frac{\mathrm{2}^{\mathrm{t}} }{\mathrm{t}}=\mathrm{2}^{\mathrm{3}} \:\: \\ $$$$\:\:\:\:\:\frac{\mathrm{2}^{{y}^{\mathrm{2}} +\mathrm{3}} }{{y}^{\mathrm{2}} +\mathrm{3}}=\mathrm{2}^{\mathrm{3}} =\mathrm{2}^{\mathrm{3}} \frac{\mathrm{2}^{{y}^{\mathrm{2}} } }{{y}^{\mathrm{2}} +\mathrm{3}} \\ $$$$\:\:\:\:\frac{\mathrm{2}^{{y}^{\mathrm{2}} } }{{y}^{\mathrm{2}} +\mathrm{3}}=\mathrm{1}\Rightarrow\mathrm{2}^{{y}^{\mathrm{2}} } ={y}^{\mathrm{2}} +\mathrm{3} \\ $$$$\:\:\:\:\:\:\: \\ $$$$\boldsymbol{{Solution}}=\left\{−\mathrm{1};+\mathrm{1}\right\} \\ $$$$\:\:\: \\ $$

Commented by Humble last updated on 25/Feb/23

Great! Thanks alot

$${Great}!\:{Thanks}\:{alot} \\ $$

Commented by mr W last updated on 25/Feb/23

wrong!  y=−1 doesn′t satisfy the equation!  6(−1)+2^((−1)^2 ) +(−1)^3 =−5≠9

$${wrong}! \\ $$$${y}=−\mathrm{1}\:{doesn}'{t}\:{satisfy}\:{the}\:{equation}! \\ $$$$\mathrm{6}\left(−\mathrm{1}\right)+\mathrm{2}^{\left(−\mathrm{1}\right)^{\mathrm{2}} } +\left(−\mathrm{1}\right)^{\mathrm{3}} =−\mathrm{5}\neq\mathrm{9} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com