Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 187948 by horsebrand11 last updated on 24/Feb/23

  Given a set H={1,2,3,...,300. We will a  create a subset of H consisting of   three elements. If the sum of the  three elements is divisible by 3    then the number of subsets that   canbe made is x. Find the  remainder if x is divided by 100000

$$ \\ $$$$\mathrm{Given}\:\mathrm{a}\:\mathrm{set}\:\mathrm{H}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},...,\mathrm{300}.\:\mathrm{We}\:\mathrm{will}\:\mathrm{a}\right. \\ $$$$\mathrm{cre}{a}\mathrm{te}\:\mathrm{a}\:\mathrm{subset}\:\mathrm{of}\:\mathrm{H}\:\mathrm{consisting}\:\mathrm{of}\: \\ $$$$\mathrm{thre}{e}\:\mathrm{elements}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{thr}{e}\mathrm{e}\:\mathrm{elements}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{3}\:\: \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{subsets}\:\mathrm{that}\: \\ $$$$\mathrm{canbe}\:\mathrm{made}\:\mathrm{is}\:\mathrm{x}.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{remaind}{e}\mathrm{r}\:\mathrm{if}\:\mathrm{x}\:\mathrm{is}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{100000} \\ $$

Answered by mr W last updated on 24/Feb/23

H_1 ={1,4,7,..,298} with 100 elements  H_2 ={2,5,8,..,299} with 100 elements  H_3 ={3,6,9,..,300} with 100 elements  such that the sum of 3 elements from  H is divisible by 3, there are following  possibilities:  1) all 3 elements are from H_3  or H_1  or H_2   2) one element from H_1 , one from H_2        and one from H_3   total number of ways:  x=3×C_3 ^(100) +C_1 ^(100) ×C_1 ^(100) ×C_1 ^(100) =1 485 100  x mod 100000 =485 100

$${H}_{\mathrm{1}} =\left\{\mathrm{1},\mathrm{4},\mathrm{7},..,\mathrm{298}\right\}\:{with}\:\mathrm{100}\:{elements} \\ $$$${H}_{\mathrm{2}} =\left\{\mathrm{2},\mathrm{5},\mathrm{8},..,\mathrm{299}\right\}\:{with}\:\mathrm{100}\:{elements} \\ $$$${H}_{\mathrm{3}} =\left\{\mathrm{3},\mathrm{6},\mathrm{9},..,\mathrm{300}\right\}\:{with}\:\mathrm{100}\:{elements} \\ $$$${such}\:{that}\:{the}\:{sum}\:{of}\:\mathrm{3}\:{elements}\:{from} \\ $$$${H}\:{is}\:{divisible}\:{by}\:\mathrm{3},\:{there}\:{are}\:{following} \\ $$$${possibilities}: \\ $$$$\left.\mathrm{1}\right)\:{all}\:\mathrm{3}\:{elements}\:{are}\:{from}\:{H}_{\mathrm{3}} \:{or}\:{H}_{\mathrm{1}} \:{or}\:{H}_{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\:{one}\:{element}\:{from}\:{H}_{\mathrm{1}} ,\:{one}\:{from}\:{H}_{\mathrm{2}} \\ $$$$\:\:\:\:\:{and}\:{one}\:{from}\:{H}_{\mathrm{3}} \\ $$$${total}\:{number}\:{of}\:{ways}: \\ $$$${x}=\mathrm{3}×{C}_{\mathrm{3}} ^{\mathrm{100}} +{C}_{\mathrm{1}} ^{\mathrm{100}} ×{C}_{\mathrm{1}} ^{\mathrm{100}} ×{C}_{\mathrm{1}} ^{\mathrm{100}} =\mathrm{1}\:\mathrm{485}\:\mathrm{100} \\ $$$${x}\:{mod}\:\mathrm{100000}\:=\mathrm{485}\:\mathrm{100} \\ $$

Commented by cortano12 last updated on 24/Feb/23

sir i think it =3C_3 ^(100) +100^3    it is correct?

$$\mathrm{sir}\:\mathrm{i}\:\mathrm{think}\:\mathrm{it}\:=\mathrm{3C}_{\mathrm{3}} ^{\mathrm{100}} +\mathrm{100}^{\mathrm{3}} \\ $$$$\:\mathrm{it}\:\mathrm{is}\:\mathrm{correct}? \\ $$

Commented by kapoorshah last updated on 24/Feb/23

wrong    The possibilities :  (1) all 3 elements are from H_1   (2) all 3 elements are from H_2   (3) all 3 elements are from H_3   (4) one element from H_1 , H_2 , H_3  respectively   total number of ways :  x = 3×C_3 ^(100)  + C_1 ^(100)  × C_1 ^(100)  × C_(1   ) ^(100)       = 1 485 100

$${wrong} \\ $$$$ \\ $$$${The}\:{possibilities}\:: \\ $$$$\left(\mathrm{1}\right)\:{all}\:\mathrm{3}\:{elements}\:{are}\:{from}\:{H}_{\mathrm{1}} \\ $$$$\left(\mathrm{2}\right)\:{all}\:\mathrm{3}\:{elements}\:{are}\:{from}\:{H}_{\mathrm{2}} \\ $$$$\left(\mathrm{3}\right)\:{all}\:\mathrm{3}\:{elements}\:{are}\:{from}\:{H}_{\mathrm{3}} \\ $$$$\left(\mathrm{4}\right)\:{one}\:{element}\:{from}\:{H}_{\mathrm{1}} ,\:{H}_{\mathrm{2}} ,\:{H}_{\mathrm{3}} \:{respectively} \\ $$$$\:{total}\:{number}\:{of}\:{ways}\:: \\ $$$${x}\:=\:\mathrm{3}×{C}_{\mathrm{3}} ^{\mathrm{100}} \:+\:{C}_{\mathrm{1}} ^{\mathrm{100}} \:×\:{C}_{\mathrm{1}} ^{\mathrm{100}} \:×\:{C}_{\mathrm{1}\:\:\:} ^{\mathrm{100}} \\ $$$$\:\:\:\:=\:\mathrm{1}\:\mathrm{485}\:\mathrm{100} \\ $$$$ \\ $$

Commented by mr W last updated on 24/Feb/23

yes, 3×C_3 ^(100) +100^3  is correct!

$${yes},\:\mathrm{3}×{C}_{\mathrm{3}} ^{\mathrm{100}} +\mathrm{100}^{\mathrm{3}} \:{is}\:{correct}! \\ $$

Commented by horsebrand11 last updated on 25/Feb/23

Yes..

$${Yes}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com