Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 187765 by Tawa11 last updated on 21/Feb/23

Answered by cortano12 last updated on 21/Feb/23

(1i)⇒(x−1)(x−3)+(y−3)(y−7)=0  ⇒x^2 +y^2 −4x−10y+24=0

$$\left(\mathrm{1i}\right)\Rightarrow\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}−\mathrm{3}\right)+\left(\mathrm{y}−\mathrm{3}\right)\left(\mathrm{y}−\mathrm{7}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{4x}−\mathrm{10y}+\mathrm{24}=\mathrm{0} \\ $$

Answered by cortano12 last updated on 21/Feb/23

(1.2) r=∣4∣=4  ⇒(x−3)^2 +(y−4)^2 =16  ⇒x^2 +y^2 −6x−8y+9=0

$$\left(\mathrm{1}.\mathrm{2}\right)\:\mathrm{r}=\mid\mathrm{4}\mid=\mathrm{4} \\ $$$$\Rightarrow\left(\mathrm{x}−\mathrm{3}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{4}\right)^{\mathrm{2}} =\mathrm{16} \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{6x}−\mathrm{8y}+\mathrm{9}=\mathrm{0} \\ $$

Answered by floor(10²Eta[1]) last updated on 21/Feb/23

(1):AB=2ı+4ȷ⇒∥AB∥=(√(4+16))=(√(20))=2(√5)  ⇒radius=(√5)  Center:  (((3+1)/2), ((7+3)/2))=(2,5)  ⇒(x−2)^2 +(y−5)^2 =5    (2): r=4  (x−3)^2 +(y−4)^2 =16

$$\left(\mathrm{1}\right):\mathrm{AB}=\mathrm{2}\imath+\mathrm{4}\jmath\Rightarrow\parallel\mathrm{AB}\parallel=\sqrt{\mathrm{4}+\mathrm{16}}=\sqrt{\mathrm{20}}=\mathrm{2}\sqrt{\mathrm{5}} \\ $$$$\Rightarrow\mathrm{radius}=\sqrt{\mathrm{5}} \\ $$$$\mathrm{Center}:\:\:\left(\frac{\mathrm{3}+\mathrm{1}}{\mathrm{2}},\:\frac{\mathrm{7}+\mathrm{3}}{\mathrm{2}}\right)=\left(\mathrm{2},\mathrm{5}\right) \\ $$$$\Rightarrow\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{5}\right)^{\mathrm{2}} =\mathrm{5} \\ $$$$ \\ $$$$\left(\mathrm{2}\right):\:\mathrm{r}=\mathrm{4} \\ $$$$\left(\mathrm{x}−\mathrm{3}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{4}\right)^{\mathrm{2}} =\mathrm{16} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com