Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 187683 by 073 last updated on 20/Feb/23

Answered by anurup last updated on 20/Feb/23

I_1 =∫(√(tan x)) dx  =(1/2)∫{((√(tan x)) +(√(cot x)) )+((√(tan x)) −(√(cot x)))}dx  =(1/2)∫{((√((sin x)/(cos x))) +(√((cos x)/(sin x))))+ ((√((sin x)/(cos x))) −(√((cos x)/(sin x))) )}dx  =(1/2)∫{(((sin x+cos x)/( (√(sin xcos x)))))+(((sin x−cos x)/( (√(sin xcos x)))))}dx  =(1/( (√2)))∫{(((sin x+cos x)/( (√(2sin xcos x)))))+(((sin x−cos x)/( (√(2sin xcos x)))))}dx  =(1/( (√2)))∫{(((sin x+cos x)/( (√(1−(1−2sin xcos x))))))+(((sin x−cos x)/( (√((1+2sin xcos x)−1)))))}dx  =(1/( (√2)))∫{(((sin x+cos x)/( (√(1−(sin x−cos x)^2 )))))−(((cos x−sin  x)/( (√((sin x+cos x)^2 −1)))))}dx  =(1/( (√(2 )) ))∫(du/( (√(1−u^(2 ) ))))−(1/( (√2)))∫(dv/( (√(v^2 −1)))) [u=sin x−cos x, v=sin x+cos x]  =(1/( (√2)))sin^(−1) (u)−(1/( (√2)))ln ∣v+(√(v^2 −1)) ∣+C_1   =(1/( (√2)))sin^(−1) (sin x−cos x)−(1/( (√2)))ln ∣sin x+cos x+(√(sin 2x)) ∣+C_1   I_(2 ) =∫(((3xe^x^2  ))^(1/3) /(1+x^7 ))dx  =∫(((3x)^(1/3)  e^(x^2 /3) )/(1+x^7 ))dx

$$\mathrm{I}_{\mathrm{1}} =\int\sqrt{\mathrm{tan}\:{x}}\:{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\left\{\left(\sqrt{\mathrm{tan}\:{x}}\:+\sqrt{\mathrm{cot}\:{x}}\:\right)+\left(\sqrt{\mathrm{tan}\:{x}}\:−\sqrt{\mathrm{cot}\:{x}}\right)\right\}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\left\{\left(\sqrt{\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}}\:+\sqrt{\frac{\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}}}\right)+\:\left(\sqrt{\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}}\:−\sqrt{\frac{\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}}}\:\right)\right\}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\left\{\left(\frac{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}{\:\sqrt{\mathrm{sin}\:{x}\mathrm{cos}\:{x}}}\right)+\left(\frac{\mathrm{sin}\:{x}−\mathrm{cos}\:{x}}{\:\sqrt{\mathrm{sin}\:{x}\mathrm{cos}\:{x}}}\right)\right\}{dx} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\left\{\left(\frac{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}{\:\sqrt{\mathrm{2sin}\:{x}\mathrm{cos}\:{x}}}\right)+\left(\frac{\mathrm{sin}\:{x}−\mathrm{cos}\:{x}}{\:\sqrt{\mathrm{2sin}\:{x}\mathrm{cos}\:{x}}}\right)\right\}{dx} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\left\{\left(\frac{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}{\:\sqrt{\mathrm{1}−\left(\mathrm{1}−\mathrm{2sin}\:{x}\mathrm{cos}\:{x}\right)}}\right)+\left(\frac{\mathrm{sin}\:{x}−\mathrm{cos}\:{x}}{\:\sqrt{\left(\mathrm{1}+\mathrm{2sin}\:{x}\mathrm{cos}\:{x}\right)−\mathrm{1}}}\right)\right\}{dx} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\left\{\left(\frac{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}{\:\sqrt{\mathrm{1}−\left(\mathrm{sin}\:{x}−\mathrm{cos}\:{x}\right)^{\mathrm{2}} }}\right)−\left(\frac{\mathrm{cos}\:{x}−\mathrm{sin}\:\:{x}}{\:\sqrt{\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} −\mathrm{1}}}\right)\right\}{dx} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}\:}\:}\int\frac{{du}}{\:\sqrt{\mathrm{1}−{u}^{\mathrm{2}\:} }}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\frac{{dv}}{\:\sqrt{{v}^{\mathrm{2}} −\mathrm{1}}}\:\left[{u}=\mathrm{sin}\:{x}−\mathrm{cos}\:{x},\:{v}=\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right] \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{sin}^{−\mathrm{1}} \left({u}\right)−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{ln}\:\mid{v}+\sqrt{{v}^{\mathrm{2}} −\mathrm{1}}\:\mid+\mathrm{C}_{\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{sin}\:{x}−\mathrm{cos}\:{x}\right)−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\mathrm{ln}\:\mid\mathrm{sin}\:{x}+\mathrm{cos}\:{x}+\sqrt{\mathrm{sin}\:\mathrm{2}{x}}\:\mid+\mathrm{C}_{\mathrm{1}} \\ $$$$\mathrm{I}_{\mathrm{2}\:} =\int\frac{\sqrt[{\mathrm{3}}]{\mathrm{3}{xe}^{{x}^{\mathrm{2}} } }}{\mathrm{1}+{x}^{\mathrm{7}} }{dx} \\ $$$$=\int\frac{\left(\mathrm{3}{x}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:{e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{3}}} }{\mathrm{1}+{x}^{\mathrm{7}} }{dx} \\ $$$$ \\ $$

Commented by anurup last updated on 20/Feb/23

I_2  not done

$$\mathrm{I}_{\mathrm{2}} \:\mathrm{not}\:\mathrm{done} \\ $$

Commented by 073 last updated on 21/Feb/23

thanks alot

$$\mathrm{thanks}\:\mathrm{alot} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com