Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 187433 by Mastermind last updated on 17/Feb/23

Prove that ▽×▽φ=0. If φ is  assumed to be continous and  having continous first and second  order derivatives.    M.m

$$\mathrm{Prove}\:\mathrm{that}\:\bigtriangledown×\bigtriangledown\phi=\mathrm{0}.\:\mathrm{If}\:\phi\:\mathrm{is} \\ $$$$\mathrm{assumed}\:\mathrm{to}\:\mathrm{be}\:\mathrm{continous}\:\mathrm{and} \\ $$$$\mathrm{having}\:\mathrm{continous}\:\mathrm{first}\:\mathrm{and}\:\mathrm{second} \\ $$$$\mathrm{order}\:\mathrm{derivatives}. \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Answered by aleks041103 last updated on 17/Feb/23

▽×▽f =  determinant ((i,j,k),(∂_x ,∂_y ,∂_z ),(∂_x f,∂_y f,∂_z f))=  =i(∂_(yz) f−∂_(zy) f)+j(∂_(zx) f−∂_(xz) f)+k(∂_(xy) f−∂_(yx) f)=  =0i+0j+0k=0  since by shwartz rule:  ∂_(ab) f=(∂^2 f/(∂a∂b))=(∂^2 f/(∂b∂a))=∂_(ba) f  for all two times differentiable f

$$\bigtriangledown×\bigtriangledown{f}\:=\:\begin{vmatrix}{{i}}&{{j}}&{{k}}\\{\partial_{{x}} }&{\partial_{{y}} }&{\partial_{{z}} }\\{\partial_{{x}} {f}}&{\partial_{{y}} {f}}&{\partial_{{z}} {f}}\end{vmatrix}= \\ $$$$={i}\left(\partial_{{yz}} {f}−\partial_{{zy}} {f}\right)+{j}\left(\partial_{{zx}} {f}−\partial_{{xz}} {f}\right)+{k}\left(\partial_{{xy}} {f}−\partial_{{yx}} {f}\right)= \\ $$$$=\mathrm{0}{i}+\mathrm{0}{j}+\mathrm{0}{k}=\mathrm{0} \\ $$$${since}\:{by}\:{shwartz}\:{rule}: \\ $$$$\partial_{{ab}} {f}=\frac{\partial^{\mathrm{2}} {f}}{\partial{a}\partial{b}}=\frac{\partial^{\mathrm{2}} {f}}{\partial{b}\partial{a}}=\partial_{{ba}} {f} \\ $$$${for}\:{all}\:{two}\:{times}\:{differentiable}\:{f} \\ $$

Commented by Mastermind last updated on 17/Feb/23

Thank you so much my BOSS

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{my}\:\mathrm{BOSS} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com