Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 187381 by a.lgnaoui last updated on 16/Feb/23

3^x =5^y =225  Determiner:   (1/x)+(1/y) ?

$$\mathrm{3}^{{x}} =\mathrm{5}^{{y}} =\mathrm{225} \\ $$$${Determiner}:\:\:\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}\:? \\ $$

Answered by horsebrand11 last updated on 16/Feb/23

  { ((x=log _3 225)),((y=log _5 225)) :}⇒(1/x)+(1/y) =log _(15^2 ) (15)=(1/2)

$$\:\begin{cases}{{x}=\mathrm{log}\:_{\mathrm{3}} \mathrm{225}}\\{{y}=\mathrm{log}\:_{\mathrm{5}} \mathrm{225}}\end{cases}\Rightarrow\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}\:=\mathrm{log}\:_{\mathrm{15}^{\mathrm{2}} } \left(\mathrm{15}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by a.lgnaoui last updated on 16/Feb/23

thanks

$${thanks} \\ $$

Answered by anurup last updated on 17/Feb/23

3=225^(1/x)  5=225^(1/y)   ∴3×5=225^(((1/x)+(1/y)))   ⇒15=15^(2((1/x)+(1/y)))   ⇒2((1/x)+(1/y))=1  ⇒(1/x)+(1/y)=(1/2)  can also be done without taking log

$$\mathrm{3}=\mathrm{225}^{\frac{\mathrm{1}}{{x}}} \:\mathrm{5}=\mathrm{225}^{\frac{\mathrm{1}}{{y}}} \\ $$$$\therefore\mathrm{3}×\mathrm{5}=\mathrm{225}^{\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}\right)} \\ $$$$\Rightarrow\mathrm{15}=\mathrm{15}^{\mathrm{2}\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}\right)} \\ $$$$\Rightarrow\mathrm{2}\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}\right)=\mathrm{1} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{can}\:\mathrm{also}\:\mathrm{be}\:\mathrm{done}\:\mathrm{without}\:\mathrm{taking}\:\mathrm{log} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com