Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 187359 by Humble last updated on 16/Feb/23

  what are the two complex solution to  X^(−x) +(−X)^x =0 in addition to ±1 ?

$$ \\ $$$${what}\:{are}\:{the}\:{two}\:{complex}\:{solution}\:{to} \\ $$$${X}^{−{x}} +\left(−{X}\right)^{{x}} =\mathrm{0}\:{in}\:{addition}\:{to}\:\pm\mathrm{1}\:? \\ $$

Answered by Frix last updated on 16/Feb/23

x=ri; let r>0 [due to symmetry]  (ri)^(−ri) +(−ri)^(ri) =0  2e^((πr)/2) cos (rln r) =0  cos (rln r) =0  rln r =(n−(1/2))π; n∈Z  Since the minimum of rln r is  −(1/e)≈−.367879 ⇒ n≈.382900  and r∈R  ⇒  rln r =(n−(1/2))π; n∈N^★   We get infinite solutions  n=1 r≈2.10729948  n=2 r≈3.64417367  n=3 r≈4.92574568  ...

$${x}={r}\mathrm{i};\:\mathrm{let}\:{r}>\mathrm{0}\:\left[\mathrm{due}\:\mathrm{to}\:\mathrm{symmetry}\right] \\ $$$$\left({r}\mathrm{i}\right)^{−{r}\mathrm{i}} +\left(−{r}\mathrm{i}\right)^{{r}\mathrm{i}} =\mathrm{0} \\ $$$$\mathrm{2e}^{\frac{\pi{r}}{\mathrm{2}}} \mathrm{cos}\:\left({r}\mathrm{ln}\:{r}\right)\:=\mathrm{0} \\ $$$$\mathrm{cos}\:\left({r}\mathrm{ln}\:{r}\right)\:=\mathrm{0} \\ $$$${r}\mathrm{ln}\:{r}\:=\left({n}−\frac{\mathrm{1}}{\mathrm{2}}\right)\pi;\:{n}\in\mathbb{Z} \\ $$$$\mathrm{Since}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{of}\:{r}\mathrm{ln}\:{r}\:\mathrm{is} \\ $$$$−\frac{\mathrm{1}}{\mathrm{e}}\approx−.\mathrm{367879}\:\Rightarrow\:{n}\approx.\mathrm{382900} \\ $$$$\mathrm{and}\:{r}\in\mathbb{R} \\ $$$$\Rightarrow \\ $$$${r}\mathrm{ln}\:{r}\:=\left({n}−\frac{\mathrm{1}}{\mathrm{2}}\right)\pi;\:{n}\in\mathbb{N}^{\bigstar} \\ $$$$\mathrm{We}\:\mathrm{get}\:\mathrm{infinite}\:\mathrm{solutions} \\ $$$${n}=\mathrm{1}\:{r}\approx\mathrm{2}.\mathrm{10729948} \\ $$$${n}=\mathrm{2}\:{r}\approx\mathrm{3}.\mathrm{64417367} \\ $$$${n}=\mathrm{3}\:{r}\approx\mathrm{4}.\mathrm{92574568} \\ $$$$... \\ $$

Commented by Humble last updated on 16/Feb/23

nice approach.  one can also go  with   Lambert W function

$${nice}\:{approach}.\:\:{one}\:{can}\:{also}\:{go}\:\:{with}\: \\ $$$${Lambert}\:{W}\:{function} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com