Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 187301 by Rupesh123 last updated on 15/Feb/23

Answered by HeferH last updated on 16/Feb/23

 chord theorem:  5^2  = x(5 + 3)   ((25)/8) = x   ((25)/8) + 8 = 2r   ((225)/(16)) = r   A ≠  ((225^2 )/(16^2 ))π  = ((11025π)/(256)) (i assumed   that the line was diameter which is false)

$$\:{chord}\:{theorem}: \\ $$$$\mathrm{5}^{\mathrm{2}} \:=\:{x}\left(\mathrm{5}\:+\:\mathrm{3}\right) \\ $$$$\:\frac{\mathrm{25}}{\mathrm{8}}\:=\:{x} \\ $$$$\:\frac{\mathrm{25}}{\mathrm{8}}\:+\:\mathrm{8}\:=\:\mathrm{2}{r} \\ $$$$\:\frac{\mathrm{225}}{\mathrm{16}}\:=\:{r} \\ $$$$\:{A}\:\neq\:\:\frac{\mathrm{225}^{\mathrm{2}} }{\mathrm{16}^{\mathrm{2}} }\pi\:\:=\:\frac{\mathrm{11025}\pi}{\mathrm{256}}\:\left({i}\:{assumed}\right. \\ $$$$\left.\:{that}\:{the}\:{line}\:{was}\:{diameter}\:{which}\:{is}\:{false}\right) \\ $$$$\: \\ $$

Commented by Rupesh123 last updated on 15/Feb/23

Good!

Commented by Rupesh123 last updated on 15/Feb/23

Please note that it doesn't say the bottom of the square is coincident with the diameter

Commented by HeferH last updated on 15/Feb/23

Yes sir, you are right, im going to correct it

$${Yes}\:{sir},\:{you}\:{are}\:{right},\:{im}\:{going}\:{to}\:{correct}\:{it}\: \\ $$

Commented by HeferH last updated on 15/Feb/23

Commented by HeferH last updated on 15/Feb/23

b(5 + 3) = 5a  3(b + 5) = 5a   8b = 3b + 15   b = 3   ⇒ a = ((24)/5)   r^2  = ((25 + (5 + a)^2 )/4) = ((25 + ((2401)/(25)))/4) = ((625+2401)/(100))   = ((3026)/(100)) = ((1513)/(50))    A = ((1513π)/(50))

$${b}\left(\mathrm{5}\:+\:\mathrm{3}\right)\:=\:\mathrm{5}{a} \\ $$$$\mathrm{3}\left({b}\:+\:\mathrm{5}\right)\:=\:\mathrm{5}{a} \\ $$$$\:\mathrm{8}{b}\:=\:\mathrm{3}{b}\:+\:\mathrm{15} \\ $$$$\:{b}\:=\:\mathrm{3} \\ $$$$\:\Rightarrow\:{a}\:=\:\frac{\mathrm{24}}{\mathrm{5}} \\ $$$$\:{r}^{\mathrm{2}} \:=\:\frac{\mathrm{25}\:+\:\left(\mathrm{5}\:+\:{a}\right)^{\mathrm{2}} }{\mathrm{4}}\:=\:\frac{\mathrm{25}\:+\:\frac{\mathrm{2401}}{\mathrm{25}}}{\mathrm{4}}\:=\:\frac{\mathrm{625}+\mathrm{2401}}{\mathrm{100}} \\ $$$$\:=\:\frac{\mathrm{3026}}{\mathrm{100}}\:=\:\frac{\mathrm{1513}}{\mathrm{50}}\: \\ $$$$\:{A}\:=\:\frac{\mathrm{1513}\pi}{\mathrm{50}} \\ $$$$\: \\ $$

Commented by Rupesh123 last updated on 16/Feb/23

Excellent

Answered by mr W last updated on 15/Feb/23

Commented by mr W last updated on 15/Feb/23

AB=(√(3^2 +5^2 ))=(√(34))  BC=(√(5^2 +(5+3)^2 ))=(√(89))  sin θ=(5/( (√(34))))  2R=((BC)/(sin θ))=(((√(89))×(√(34)))/5)=((√(3026))/5)  R=((√(3026))/(10))  area of circle =πR^2 =((3026π)/(100))=((1513π)/(50))

$${AB}=\sqrt{\mathrm{3}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} }=\sqrt{\mathrm{34}} \\ $$$${BC}=\sqrt{\mathrm{5}^{\mathrm{2}} +\left(\mathrm{5}+\mathrm{3}\right)^{\mathrm{2}} }=\sqrt{\mathrm{89}} \\ $$$$\mathrm{sin}\:\theta=\frac{\mathrm{5}}{\:\sqrt{\mathrm{34}}} \\ $$$$\mathrm{2}{R}=\frac{{BC}}{\mathrm{sin}\:\theta}=\frac{\sqrt{\mathrm{89}}×\sqrt{\mathrm{34}}}{\mathrm{5}}=\frac{\sqrt{\mathrm{3026}}}{\mathrm{5}} \\ $$$${R}=\frac{\sqrt{\mathrm{3026}}}{\mathrm{10}} \\ $$$${area}\:{of}\:{circle}\:=\pi{R}^{\mathrm{2}} =\frac{\mathrm{3026}\pi}{\mathrm{100}}=\frac{\mathrm{1513}\pi}{\mathrm{50}} \\ $$

Commented by Rupesh123 last updated on 15/Feb/23

Excellent

Terms of Service

Privacy Policy

Contact: info@tinkutara.com