Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 187296 by anurup last updated on 15/Feb/23

Prove that for n≥4, S_n = Σ_(k=1) ^n k^(k!)  is never a perfect cube.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{for}\:\mathrm{n}\geqslant\mathrm{4},\:\mathrm{S}_{{n}} =\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{{k}!} \:\mathrm{is}\:\mathrm{never}\:\mathrm{a}\:\mathrm{perfect}\:\mathrm{cube}. \\ $$

Commented by anurup last updated on 15/Feb/23

Please solve this.

$$\mathrm{Please}\:\mathrm{solve}\:\mathrm{this}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com