Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 187095 by normans last updated on 13/Feb/23

          ∫_0 ^1      (1/( (√(1 − x^2 ))))  +  (1/( (√(1 − x^2 ))))  dx

$$ \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}\:−\:\boldsymbol{{x}}^{\mathrm{2}} }}\:\:+\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}\:−\:\boldsymbol{{x}}^{\mathrm{2}} }}\:\:\boldsymbol{{dx}}\:\:\:\:\:\: \\ $$$$ \\ $$

Commented by Frix last updated on 13/Feb/23

This is too hard since we have not yet  learned how to add (1/x)+(1/x). Is it ((1+1)/(x+x))? Or  maybe (1/x)+(1/x)=(1/x)−(x/1)? We need a genius  to help us out...

$$\mathrm{This}\:\mathrm{is}\:\mathrm{too}\:\mathrm{hard}\:\mathrm{since}\:\mathrm{we}\:\mathrm{have}\:\mathrm{not}\:\mathrm{yet} \\ $$$$\mathrm{learned}\:\mathrm{how}\:\mathrm{to}\:\mathrm{add}\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{x}}.\:\mathrm{Is}\:\mathrm{it}\:\frac{\mathrm{1}+\mathrm{1}}{{x}+{x}}?\:\mathrm{Or} \\ $$$$\mathrm{maybe}\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{x}}=\frac{\mathrm{1}}{{x}}−\frac{{x}}{\mathrm{1}}?\:\mathrm{We}\:\mathrm{need}\:\mathrm{a}\:\mathrm{genius} \\ $$$$\mathrm{to}\:\mathrm{help}\:\mathrm{us}\:\mathrm{out}... \\ $$

Answered by MJS_new last updated on 13/Feb/23

the answer is  −i ln (−1)

$$\mathrm{the}\:\mathrm{answer}\:\mathrm{is} \\ $$$$−\mathrm{i}\:\mathrm{ln}\:\left(−\mathrm{1}\right) \\ $$

Answered by CElcedricjunior last updated on 14/Feb/23

∫_0 ^1 ((1/( (√(1−x^2 ))))+(1/( (√(1−x^2 )))))dx=2∫_0 ^1 (dx/( (√(1−x^2 )))) ★Moivre  =2[arcsin(x)]_0 ^1 ■cel  cedric junior  =2[(𝛑/2)]  =>∫_0 ^1 ((1/( (√(1−x^2 ))))+(1/( (√(1−x^2 )))))dx=𝛑

$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\boldsymbol{{x}}^{\mathrm{2}} }}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\boldsymbol{{x}}^{\mathrm{2}} }}\right)\boldsymbol{{dx}}=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{{dx}}}{\:\sqrt{\mathrm{1}−\boldsymbol{{x}}^{\mathrm{2}} }}\:\bigstar{Moivre} \\ $$$$=\mathrm{2}\left[\boldsymbol{{arcsin}}\left(\boldsymbol{{x}}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \blacksquare\boldsymbol{{cel}}\:\:\boldsymbol{{cedric}}\:\boldsymbol{{junior}} \\ $$$$=\mathrm{2}\left[\frac{\boldsymbol{\pi}}{\mathrm{2}}\right] \\ $$$$=>\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\boldsymbol{{x}}^{\mathrm{2}} }}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\boldsymbol{{x}}^{\mathrm{2}} }}\right)\boldsymbol{{dx}}=\boldsymbol{\pi} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com