Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 186053 by Rupesh123 last updated on 31/Jan/23

Answered by SEKRET last updated on 31/Jan/23

  a^2 −5a−1=0        a^2 =5a+1       a^3 =5a^2 +a=5(5a+1)+a=26a+5     (26a+5)^2 −140(26a+5)+5=      676a^2 −3380a−670=   676(5a+1)−3380a−670=     3380a+676−3380a−670=6

$$\:\:\boldsymbol{\mathrm{a}}^{\mathrm{2}} −\mathrm{5}\boldsymbol{\mathrm{a}}−\mathrm{1}=\mathrm{0}\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{a}}^{\mathrm{2}} =\mathrm{5}\boldsymbol{\mathrm{a}}+\mathrm{1} \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{a}}^{\mathrm{3}} =\mathrm{5}\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{a}}=\mathrm{5}\left(\mathrm{5}\boldsymbol{\mathrm{a}}+\mathrm{1}\right)+\boldsymbol{\mathrm{a}}=\mathrm{26}\boldsymbol{\mathrm{a}}+\mathrm{5} \\ $$$$\:\:\:\left(\mathrm{26}\boldsymbol{\mathrm{a}}+\mathrm{5}\right)^{\mathrm{2}} −\mathrm{140}\left(\mathrm{26}\boldsymbol{\mathrm{a}}+\mathrm{5}\right)+\mathrm{5}= \\ $$$$\:\:\:\:\mathrm{676}\boldsymbol{\mathrm{a}}^{\mathrm{2}} −\mathrm{3380}\boldsymbol{\mathrm{a}}−\mathrm{670}= \\ $$$$\:\mathrm{676}\left(\mathrm{5}\boldsymbol{\mathrm{a}}+\mathrm{1}\right)−\mathrm{3380}\boldsymbol{\mathrm{a}}−\mathrm{670}= \\ $$$$\:\:\:\mathrm{3380}\boldsymbol{\mathrm{a}}+\mathrm{676}−\mathrm{3380}\boldsymbol{\mathrm{a}}−\mathrm{670}=\mathrm{6}\: \\ $$

Answered by Rasheed.Sindhi last updated on 31/Jan/23

AnOther Way  a^2 −5a−1=0 ; a^6 −140a^3 +5=?  a−(1/a)=5   (a−(1/a))^3 =5^3   a^3 −(1/a^3 )−3(a−(1/a))=125  a^3 −(1/a^3 )−3(5)=125  a^3 −(1/a^3 )=140  ▶ a^6 −140a^3 +5       =a^6 −140a^3 −1+6       =a^3 (a^3 −(1/a^3 )−140)+6       =a^3 (140−140)+6      =6

$$\mathbb{A}\boldsymbol{\mathrm{n}}\mathbb{O}\boldsymbol{\mathrm{ther}}\:\mathbb{W}\boldsymbol{\mathrm{ay}} \\ $$$${a}^{\mathrm{2}} −\mathrm{5}{a}−\mathrm{1}=\mathrm{0}\:;\:{a}^{\mathrm{6}} −\mathrm{140}{a}^{\mathrm{3}} +\mathrm{5}=? \\ $$$${a}−\frac{\mathrm{1}}{{a}}=\mathrm{5}\: \\ $$$$\left({a}−\frac{\mathrm{1}}{{a}}\right)^{\mathrm{3}} =\mathrm{5}^{\mathrm{3}} \\ $$$${a}^{\mathrm{3}} −\frac{\mathrm{1}}{{a}^{\mathrm{3}} }−\mathrm{3}\left({a}−\frac{\mathrm{1}}{{a}}\right)=\mathrm{125} \\ $$$${a}^{\mathrm{3}} −\frac{\mathrm{1}}{{a}^{\mathrm{3}} }−\mathrm{3}\left(\mathrm{5}\right)=\mathrm{125} \\ $$$${a}^{\mathrm{3}} −\frac{\mathrm{1}}{{a}^{\mathrm{3}} }=\mathrm{140} \\ $$$$\blacktriangleright\:{a}^{\mathrm{6}} −\mathrm{140}{a}^{\mathrm{3}} +\mathrm{5} \\ $$$$\:\:\:\:\:={a}^{\mathrm{6}} −\mathrm{140}{a}^{\mathrm{3}} −\mathrm{1}+\mathrm{6} \\ $$$$\:\:\:\:\:={a}^{\mathrm{3}} \left({a}^{\mathrm{3}} −\frac{\mathrm{1}}{{a}^{\mathrm{3}} }−\mathrm{140}\right)+\mathrm{6} \\ $$$$\:\:\:\:\:={a}^{\mathrm{3}} \left(\cancel{\mathrm{140}}−\cancel{\mathrm{140}}\right)+\mathrm{6} \\ $$$$\:\:\:\:=\mathrm{6} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com