Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 1844 by 123456 last updated on 12/Oct/15

lets two polynimies p_n ,q_n  givwn by  p_1 =q_1 =x  p_(n+1) =p_n +q_n   q_(n+1) =p_n q_n   then (1,1)→(1,2)→(2,3)  lets W(u,v)= determinant ((u,v),((u′),(v′)))  is true that  W(p_n ,q_n )≠0,∀n>1

$$\mathrm{lets}\:\mathrm{two}\:\mathrm{polynimies}\:{p}_{{n}} ,{q}_{{n}} \:\mathrm{givwn}\:\mathrm{by} \\ $$ $${p}_{\mathrm{1}} ={q}_{\mathrm{1}} ={x} \\ $$ $${p}_{{n}+\mathrm{1}} ={p}_{{n}} +{q}_{{n}} \\ $$ $${q}_{{n}+\mathrm{1}} ={p}_{{n}} {q}_{{n}} \\ $$ $$\mathrm{then}\:\left(\mathrm{1},\mathrm{1}\right)\rightarrow\left(\mathrm{1},\mathrm{2}\right)\rightarrow\left(\mathrm{2},\mathrm{3}\right) \\ $$ $$\mathrm{lets}\:\mathrm{W}\left({u},{v}\right)=\begin{vmatrix}{{u}}&{{v}}\\{{u}'}&{{v}'}\end{vmatrix} \\ $$ $$\mathrm{is}\:\mathrm{true}\:\mathrm{that} \\ $$ $$\mathrm{W}\left({p}_{{n}} ,{q}_{{n}} \right)\neq\mathrm{0},\forall{n}>\mathrm{1} \\ $$

Commented byRasheed Soomro last updated on 12/Oct/15

What is meant by polinimes ?

$${What}\:{is}\:{meant}\:{by}\:\mathrm{polinimes}\:? \\ $$

Commented by123456 last updated on 12/Oct/15

typo

$$\mathrm{typo} \\ $$

Commented by112358 last updated on 17/Oct/15

What does the notation u′ stand  for if given any u?

$${What}\:{does}\:{the}\:{notation}\:{u}'\:{stand} \\ $$ $${for}\:{if}\:{given}\:{any}\:{u}?\: \\ $$

Commented by123456 last updated on 17/Oct/15

u′=(du/dt)=u_t =(∂u/∂t)  derivate

$${u}'=\frac{{du}}{{dt}}={u}_{{t}} =\frac{\partial{u}}{\partial{t}} \\ $$ $$\mathrm{derivate} \\ $$

Commented by112358 last updated on 18/Oct/15

Thanks for explanation.

$${Thanks}\:{for}\:{explanation}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com