Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 184264 by Noorzai last updated on 04/Jan/23

Answered by ARUNG_Brandon_MBU last updated on 04/Jan/23

I(t)=∫_0 ^∞ e^(−tx) ((sinmx)/x)dx ⇒I′(t)=−∫_0 ^∞ e^(−tx) sinmxdx  ⇒I′(t)=−[(e^(−tx) /(t^2 +m^2 ))(−tsinmx−mcosmx)]_0 ^∞                 =−(m/(t^2 +m^2 )) ⇒I(t)=−arctan((t/m))+C  lim_(t→+∞) I(t)=0=−(π/2)+C ⇒C=(π/2)  ⇒I(t)=(π/2)−arctan((t/m))  ⇒∫_0 ^∞ e^x ((sinmx)/x)dx=I(−1)=(π/2)+arctan((1/m))

$${I}\left({t}\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{tx}} \frac{\mathrm{sin}{mx}}{{x}}{dx}\:\Rightarrow{I}'\left({t}\right)=−\int_{\mathrm{0}} ^{\infty} {e}^{−{tx}} \mathrm{sin}{mxdx} \\ $$$$\Rightarrow{I}'\left({t}\right)=−\left[\frac{{e}^{−{tx}} }{{t}^{\mathrm{2}} +{m}^{\mathrm{2}} }\left(−{t}\mathrm{sin}{mx}−{m}\mathrm{cos}{mx}\right)\right]_{\mathrm{0}} ^{\infty} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=−\frac{{m}}{{t}^{\mathrm{2}} +{m}^{\mathrm{2}} }\:\Rightarrow{I}\left({t}\right)=−\mathrm{arctan}\left(\frac{{t}}{{m}}\right)+{C} \\ $$$$\underset{{t}\rightarrow+\infty} {\mathrm{lim}}{I}\left({t}\right)=\mathrm{0}=−\frac{\pi}{\mathrm{2}}+{C}\:\Rightarrow{C}=\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow{I}\left({t}\right)=\frac{\pi}{\mathrm{2}}−\mathrm{arctan}\left(\frac{{t}}{{m}}\right) \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\infty} {e}^{{x}} \frac{\mathrm{sin}{mx}}{{x}}{dx}={I}\left(−\mathrm{1}\right)=\frac{\pi}{\mathrm{2}}+\mathrm{arctan}\left(\frac{\mathrm{1}}{{m}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com