| 
 | ||
| Question Number 184144 by paul2222 last updated on 03/Jan/23 | ||
|  | ||
| $$\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\boldsymbol{\sum}}}\underset{\boldsymbol{\mathrm{m}}=\mathrm{1}} {\overset{\infty} {\boldsymbol{\sum}}}\frac{\left(β\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}+\boldsymbol{\mathrm{m}}} }{\boldsymbol{\mathrm{nm}}\left(\boldsymbol{\mathrm{n}}+\boldsymbol{\mathrm{m}}\right)} \\ $$ | ||
| Answered by SEKRET last updated on 04/Jan/23 | ||
|  | ||
| $$\:\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}}\centerdot\underset{\boldsymbol{\mathrm{m}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(β\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}+\boldsymbol{\mathrm{m}}} }{\boldsymbol{\mathrm{m}}\centerdot\left(\boldsymbol{\mathrm{n}}+\boldsymbol{\mathrm{m}}\right)} \\ $$$$\:\:\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)_{\boldsymbol{\mathrm{x}}=β\mathrm{1}} \:\:=\:\underset{\boldsymbol{\mathrm{m}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}+\boldsymbol{\mathrm{m}}} }{\boldsymbol{\mathrm{m}}\centerdot\left(\boldsymbol{\mathrm{n}}+\boldsymbol{\mathrm{m}}\right)} \\ $$$$\:\:\:\boldsymbol{\mathrm{f}}\:'\:\left(\boldsymbol{\mathrm{x}}\right)\:=\:\underset{\boldsymbol{\mathrm{m}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}+\boldsymbol{\mathrm{m}}β\mathrm{1}} }{\boldsymbol{\mathrm{m}}}=\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}β\mathrm{1}} \centerdot\underset{\boldsymbol{\mathrm{m}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{m}}} }{\boldsymbol{\mathrm{m}}} \\ $$$$\:\:\:\:\:\boldsymbol{\mathrm{f}}\:'\:\left(\boldsymbol{\mathrm{x}}\right)\:=\:\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}β\mathrm{1}} \:\centerdot\:\boldsymbol{\mathrm{ln}}\left(\frac{\mathrm{1}}{\mathrm{1}β\boldsymbol{\mathrm{x}}}\right)\:\:\:\:\:\:\boldsymbol{\mathrm{C}}=\mathrm{0} \\ $$$$\:\:\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\frac{β\mathrm{1}}{\boldsymbol{\mathrm{n}}}\centerdot\left(\int\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}β\mathrm{1}} \centerdot\boldsymbol{\mathrm{ln}}\left(\mathrm{1}β\boldsymbol{\mathrm{x}}\right)\:\boldsymbol{\mathrm{dx}}\right)\right)_{\boldsymbol{\mathrm{x}}=β\mathrm{1}} ^{\:\:\:\boldsymbol{\mathrm{C}}=\mathrm{0}} \\ $$$$\:\:\:\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left(β\:\frac{\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}} \centerdot\boldsymbol{\mathrm{ln}}\left(\mathrm{1}β\boldsymbol{\mathrm{x}}\right)\:+\boldsymbol{\mathrm{B}}_{\boldsymbol{\mathrm{x}}} \left(\boldsymbol{\mathrm{n}}+\mathrm{1},\mathrm{0}\right)}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }\:\right) \\ $$$$\:\:\:\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\frac{β\left(β\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} \centerdot\boldsymbol{\mathrm{ln}}\left(\mathrm{2}\right)}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }\:β\:\frac{\boldsymbol{\mathrm{B}}_{β\mathrm{1}} \left(\boldsymbol{\mathrm{n}}+\mathrm{1}\:;\:\mathrm{0}\right)}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }\right)= \\ $$$$\:\:=β\mathrm{1}\centerdot\boldsymbol{\mathrm{ln}}\left(\mathrm{2}\right)\centerdot\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(β\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} }{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }\:+\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{β\boldsymbol{\mathrm{B}}_{β\mathrm{1}} \left(\boldsymbol{\mathrm{n}}+\mathrm{1},\mathrm{0}\right)}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }= \\ $$$$=\:\frac{\boldsymbol{\pi}^{\mathrm{2}} \centerdot\boldsymbol{\mathrm{ln}}\left(\mathrm{2}\right)}{\mathrm{12}}\:+\:\left(\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(β\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}+\mathrm{1}} \boldsymbol{\Psi}^{\mathrm{0}} \left(\frac{\boldsymbol{\mathrm{n}}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\boldsymbol{\mathrm{n}}^{\mathrm{2}} }\:+\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{β\boldsymbol{\Psi}^{\mathrm{0}} \left(\frac{\boldsymbol{\mathrm{n}}}{\mathrm{2}}+\mathrm{1}\right)}{\mathrm{2}\boldsymbol{\mathrm{n}}^{\mathrm{2}} }\right) \\ $$$$=\:\frac{\boldsymbol{\pi}^{\mathrm{2}} \centerdot\boldsymbol{\mathrm{ln}}\left(\mathrm{2}\right)}{\mathrm{12}}\:+\left(\:β\mathrm{0}.\mathrm{28159}\:β\mathrm{0}.\mathrm{337683}\right) \\ $$$$\:\:\approx\:\mathrm{0}.\mathrm{0491823} \\ $$$$\boldsymbol{{ABDULAZIZ}}\:\:\boldsymbol{{ABDUVALIYEV}} \\ $$$$\:\:\:\:\:\: \\ $$ | ||
| Commented by paul2222 last updated on 11/Jan/23 | ||
|  | ||
| $$ \\ $$ | ||
| Answered by witcher3 last updated on 05/Jan/23 | ||
| ![β«_0 ^1 ((ln^2 (1+x))/x)dx=βli_2 (βx)ln(1+x)+β«_0 ^1 ((li_2 (βx))/(1+x))dx....(E)  Li_2 (βx)=ΞΆ(2)βln(1+x)ln(βx)βli_2 (1+x)  =li_2 (βx)ln(1+x)βLi_3 (1+x)+ΞΆ(2)ln(1+x)  ββ«_0 ^1 ((ln(1+x))/(1+x))ln(βx)  =β(1/2)ln^2 (1+x)ln(βx)+(1/2)β«((ln^2 (1+x))/x)dx  =β2li_2 (βx)ln(1+x)β2Li_3 (1+x)+2ΞΆ(2)ln(1+x)βln^2 (1+x)ln(βx)  li_2 (βx)=ΞΆ(2)βln(βx)ln(1+x)βli_2 (1+x)  β«((ln^2 (1+x))/x)dx=β2li_3 (1+x)+2li_2 (1+x)ln(1+x)+ln^2 (1+x)ln(βx)+c  Let f(x)=Ξ£_(nβ₯1) Ξ£_(mβ₯1) (((β1)^(n+m) x^(n+m) )/(nm(n+m))),βxβ[β1,1]  fβ²(x)=ΣΣ(((β1)^(n+m) )/(nm))x^(n+mβ1) =(1/x)ΣΣ(((βx)^n (βx)^m )/(n.m))  =(1/x){Ξ£(((βx)^n )/n)}{Ξ£(((βx)^m )/m)}  Ξ£_(nβ₯1) (((β1)^(nβ1) x^n )/n)=ln(1+x)  f^β² (x)=((ln^(2() (1+x))/x)  f(x)=β«((ln^2 (1+x))/x)dx...(E) apply   f(x)=β2Li_3 (1+x)+2Li_2 (1+x)ln(1+x)+ln(βx)ln^2 (1+x)+c  f(0)=0  lim_(xβ0) {β2Li_3 (1+x)+2Li_2 (1+x)ln(1+x)+ln(βx)ln^2 (1+x)+c}=0  βcβ2ΞΆ(3)=0  c=2ΞΆ(3)    f(x)=β2Li_3 (1+x)+2Li_2 (1+x)ln(1+x)+ln(βx)ln^2 (1+x)+2ΞΆ(3)  our Sum=f(1)](Q184343.png) | ||
| $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)}{{x}}{dx}=β{li}_{\mathrm{2}} \left(β{x}\right){ln}\left(\mathrm{1}+{x}\right)+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{li}_{\mathrm{2}} \left(β{x}\right)}{\mathrm{1}+{x}}{dx}....\left({E}\right) \\ $$$${Li}_{\mathrm{2}} \left(β{x}\right)=\zeta\left(\mathrm{2}\right)β{ln}\left(\mathrm{1}+{x}\right){ln}\left(β{x}\right)β{li}_{\mathrm{2}} \left(\mathrm{1}+{x}\right) \\ $$$$={li}_{\mathrm{2}} \left(β{x}\right){ln}\left(\mathrm{1}+{x}\right)β{Li}_{\mathrm{3}} \left(\mathrm{1}+{x}\right)+\zeta\left(\mathrm{2}\right){ln}\left(\mathrm{1}+{x}\right) \\ $$$$β\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}}{ln}\left(β{x}\right) \\ $$$$=β\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right){ln}\left(β{x}\right)+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)}{{x}}{dx} \\ $$$$=β\mathrm{2}{li}_{\mathrm{2}} \left(β{x}\right){ln}\left(\mathrm{1}+{x}\right)β\mathrm{2}{Li}_{\mathrm{3}} \left(\mathrm{1}+{x}\right)+\mathrm{2}\zeta\left(\mathrm{2}\right){ln}\left(\mathrm{1}+{x}\right)β{ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right){ln}\left(β{x}\right) \\ $$$${li}_{\mathrm{2}} \left(β{x}\right)=\zeta\left(\mathrm{2}\right)β{ln}\left(β{x}\right){ln}\left(\mathrm{1}+{x}\right)β{li}_{\mathrm{2}} \left(\mathrm{1}+{x}\right) \\ $$$$\int\frac{{ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)}{{x}}{dx}=β\mathrm{2}{li}_{\mathrm{3}} \left(\mathrm{1}+{x}\right)+\mathrm{2}{li}_{\mathrm{2}} \left(\mathrm{1}+{x}\right){ln}\left(\mathrm{1}+{x}\right)+{ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right){ln}\left(β{x}\right)+{c} \\ $$$${Let}\:{f}\left({x}\right)=\underset{{n}\geqslant\mathrm{1}} {\sum}\underset{{m}\geqslant\mathrm{1}} {\sum}\frac{\left(β\mathrm{1}\right)^{{n}+{m}} {x}^{{n}+{m}} }{{nm}\left({n}+{m}\right)},\forall{x}\in\left[β\mathrm{1},\mathrm{1}\right] \\ $$$${f}'\left({x}\right)=\Sigma\Sigma\frac{\left(β\mathrm{1}\right)^{{n}+{m}} }{{nm}}{x}^{{n}+{m}β\mathrm{1}} =\frac{\mathrm{1}}{{x}}\Sigma\Sigma\frac{\left(β{x}\right)^{{n}} \left(β{x}\right)^{{m}} }{{n}.{m}} \\ $$$$=\frac{\mathrm{1}}{{x}}\left\{\Sigma\frac{\left(β{x}\right)^{{n}} }{{n}}\right\}\left\{\Sigma\frac{\left(β{x}\right)^{{m}} }{{m}}\right\} \\ $$$$\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(β\mathrm{1}\right)^{{n}β\mathrm{1}} {x}^{{n}} }{{n}}={ln}\left(\mathrm{1}+{x}\right) \\ $$$${f}^{'} \left({x}\right)=\frac{{ln}^{\mathrm{2}\left(\right.} \left(\mathrm{1}+{x}\right)}{{x}} \\ $$$${f}\left({x}\right)=\int\frac{{ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)}{{x}}{dx}...\left({E}\right)\:{apply}\: \\ $$$${f}\left({x}\right)=β\mathrm{2}{Li}_{\mathrm{3}} \left(\mathrm{1}+{x}\right)+\mathrm{2}{Li}_{\mathrm{2}} \left(\mathrm{1}+{x}\right){ln}\left(\mathrm{1}+{x}\right)+{ln}\left(β{x}\right){ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)+{c} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left\{β\mathrm{2}{Li}_{\mathrm{3}} \left(\mathrm{1}+{x}\right)+\mathrm{2}{Li}_{\mathrm{2}} \left(\mathrm{1}+{x}\right){ln}\left(\mathrm{1}+{x}\right)+{ln}\left(β{x}\right){ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)+{c}\right\}=\mathrm{0} \\ $$$$\Leftrightarrow{c}β\mathrm{2}\zeta\left(\mathrm{3}\right)=\mathrm{0} \\ $$$${c}=\mathrm{2}\zeta\left(\mathrm{3}\right) \\ $$$$ \\ $$$${f}\left({x}\right)=β\mathrm{2}{Li}_{\mathrm{3}} \left(\mathrm{1}+{x}\right)+\mathrm{2}{Li}_{\mathrm{2}} \left(\mathrm{1}+{x}\right){ln}\left(\mathrm{1}+{x}\right)+{ln}\left(β{x}\right){ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)+\mathrm{2}\zeta\left(\mathrm{3}\right) \\ $$$${our}\:{Sum}={f}\left(\mathrm{1}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$ | ||