Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 183844 by Michaelfaraday last updated on 30/Dec/22

Answered by MJS_new last updated on 31/Dec/22

∫(dx/( (√(2x−1))+(√(x−3))))=  =∫(((√(2x−1))−(√(x−3)))/(((√(2x−1))+(√(x−3)))((√(2x−1−))(√(x−3)))))dx=  =∫((√(2x−1))/(x+2))dx−∫((√(x−3))/(x+2))dx=  with u=(√(2x−1)) and v=(√(x−3)) it′s easy to get  =2(√(2x−1))−2(√5)arctan ((√(2x−1))/( (√5))) −2(√(x−3))+2(√5)arctan ((√(x−3))/( (√5))) +C

$$\int\frac{{dx}}{\:\sqrt{\mathrm{2}{x}−\mathrm{1}}+\sqrt{{x}−\mathrm{3}}}= \\ $$$$=\int\frac{\sqrt{\mathrm{2}{x}−\mathrm{1}}−\sqrt{{x}−\mathrm{3}}}{\left(\sqrt{\mathrm{2}{x}−\mathrm{1}}+\sqrt{{x}−\mathrm{3}}\right)\left(\sqrt{\mathrm{2}{x}−\mathrm{1}−}\sqrt{{x}−\mathrm{3}}\right)}{dx}= \\ $$$$=\int\frac{\sqrt{\mathrm{2}{x}−\mathrm{1}}}{{x}+\mathrm{2}}{dx}−\int\frac{\sqrt{{x}−\mathrm{3}}}{{x}+\mathrm{2}}{dx}= \\ $$$$\mathrm{with}\:{u}=\sqrt{\mathrm{2}{x}−\mathrm{1}}\:\mathrm{and}\:{v}=\sqrt{{x}−\mathrm{3}}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{get} \\ $$$$=\mathrm{2}\sqrt{\mathrm{2}{x}−\mathrm{1}}−\mathrm{2}\sqrt{\mathrm{5}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{2}{x}−\mathrm{1}}}{\:\sqrt{\mathrm{5}}}\:−\mathrm{2}\sqrt{{x}−\mathrm{3}}+\mathrm{2}\sqrt{\mathrm{5}}\mathrm{arctan}\:\frac{\sqrt{{x}−\mathrm{3}}}{\:\sqrt{\mathrm{5}}}\:+{C} \\ $$

Answered by MJS_new last updated on 31/Dec/22

∫(dx/(4cos^2  x −5sin^2  x))=∫(dx/(4−9sin^2  x))=       [t=tan x → dx=(dt/(t^2 +1))]  =∫(dt/(4−5t^2 ))=((√5)/(20))ln (((√5)t+2)/( (√5)t−1)) =  =((√5)/(20))ln ∣(((√5)sin x +2cos x)/( (√5)sin x −2cos x))∣ +C

$$\int\frac{{dx}}{\mathrm{4cos}^{\mathrm{2}} \:{x}\:−\mathrm{5sin}^{\mathrm{2}} \:{x}}=\int\frac{{dx}}{\mathrm{4}−\mathrm{9sin}^{\mathrm{2}} \:{x}}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\:\rightarrow\:{dx}=\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}\right] \\ $$$$=\int\frac{{dt}}{\mathrm{4}−\mathrm{5}{t}^{\mathrm{2}} }=\frac{\sqrt{\mathrm{5}}}{\mathrm{20}}\mathrm{ln}\:\frac{\sqrt{\mathrm{5}}{t}+\mathrm{2}}{\:\sqrt{\mathrm{5}}{t}−\mathrm{1}}\:= \\ $$$$=\frac{\sqrt{\mathrm{5}}}{\mathrm{20}}\mathrm{ln}\:\mid\frac{\sqrt{\mathrm{5}}\mathrm{sin}\:{x}\:+\mathrm{2cos}\:{x}}{\:\sqrt{\mathrm{5}}\mathrm{sin}\:{x}\:−\mathrm{2cos}\:{x}}\mid\:+{C} \\ $$

Commented by Michaelfaraday last updated on 31/Dec/22

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com