Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 183814 by ali009 last updated on 30/Dec/22

determine eigen values and eigen vectors for  each λ . and verify Ax=λx  A= [(((√3)/2),(−(1/2))),((1/2),(     ((√3)/2))) ]

$${determine}\:{eigen}\:{values}\:{and}\:{eigen}\:{vectors}\:{for} \\ $$$${each}\:\lambda\:.\:{and}\:{verify}\:{Ax}=\lambda{x} \\ $$$${A}=\begin{bmatrix}{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}&{−\frac{\mathrm{1}}{\mathrm{2}}}\\{\frac{\mathrm{1}}{\mathrm{2}}}&{\:\:\:\:\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}\end{bmatrix} \\ $$

Answered by TheSupreme last updated on 30/Dec/22

{x}′=A{x} is a rotation of (π/6) rads counterclockwise  so there′s no {X} such α{X}=[A]{X}

$$\left\{{x}\right\}'={A}\left\{{x}\right\}\:{is}\:{a}\:{rotation}\:{of}\:\frac{\pi}{\mathrm{6}}\:{rads}\:{counterclockwise} \\ $$$${so}\:{there}'{s}\:{no}\:\left\{{X}\right\}\:{such}\:\alpha\left\{{X}\right\}=\left[{A}\right]\left\{{X}\right\} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com