Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 183773 by HeferH last updated on 30/Dec/22

 In a square (ABCD) there is a quarter of   a circle ADC (AD = DC), put a point N   in the arc AC such that AN = 1 and NC = 2(√2)   find BN.

$$\:{In}\:{a}\:{square}\:\left({ABCD}\right)\:{there}\:{is}\:{a}\:{quarter}\:{of} \\ $$$$\:{a}\:{circle}\:{ADC}\:\left({AD}\:=\:{DC}\right),\:{put}\:{a}\:{point}\:{N} \\ $$$$\:{in}\:{the}\:{arc}\:{AC}\:{such}\:{that}\:{AN}\:=\:\mathrm{1}\:{and}\:{NC}\:=\:\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\:{find}\:{BN}.\: \\ $$$$\: \\ $$

Answered by mr W last updated on 30/Dec/22

Commented by mr W last updated on 30/Dec/22

AC=(√2)a  AC^2 =1^2 +(2(√2))^2 −2×1×2(√2)×cos 135°  2a^2 =13  ⇒a=(√((13)/2))  cos α=((2(√2))/(2a))=(2/( (√(13)))) ⇒sin α=(3/( (√(13))))=cos β  BN^2 =(2(√2))^2 +((√((13)/2)))^2 −2(2(√2))×(√(((13)/2) ))×(3/( (√(13))))=(5/2)  ⇒BN=((√(10))/2) ✓

$${AC}=\sqrt{\mathrm{2}}{a} \\ $$$${AC}^{\mathrm{2}} =\mathrm{1}^{\mathrm{2}} +\left(\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{2}×\mathrm{1}×\mathrm{2}\sqrt{\mathrm{2}}×\mathrm{cos}\:\mathrm{135}° \\ $$$$\mathrm{2}{a}^{\mathrm{2}} =\mathrm{13} \\ $$$$\Rightarrow{a}=\sqrt{\frac{\mathrm{13}}{\mathrm{2}}} \\ $$$$\mathrm{cos}\:\alpha=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{2}{a}}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}}\:\Rightarrow\mathrm{sin}\:\alpha=\frac{\mathrm{3}}{\:\sqrt{\mathrm{13}}}=\mathrm{cos}\:\beta \\ $$$${BN}^{\mathrm{2}} =\left(\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\left(\sqrt{\frac{\mathrm{13}}{\mathrm{2}}}\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{2}\sqrt{\mathrm{2}}\right)×\sqrt{\frac{\mathrm{13}}{\mathrm{2}}\:}×\frac{\mathrm{3}}{\:\sqrt{\mathrm{13}}}=\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\Rightarrow{BN}=\frac{\sqrt{\mathrm{10}}}{\mathrm{2}}\:\checkmark \\ $$

Answered by mr W last updated on 30/Dec/22

Method II  D as origin (0,0)  say N(x,y)  x^2 +y^2 =a^2   x^2 +(a−y)^2 =1^2  ⇒a^2 −ay=(1/2)  (a−x)^2 +y^2 =(2(√2))^2  ⇒a^2 −ax=4  (((a^2 −4)/a))^2 +(((a^2 −(1/2))/a))^2 =a^2   a^4 −9a^2 +((65)/4)=0  ⇒a^2 =((13)/2) ⇒a=(√((13)/2))  ⇒x=(5/( (√(26))))  ⇒y=((12)/( (√(26))))  BN=(√(((√((13)/2))−(5/( (√(26)))))^2 +((√((13)/2))−((12)/( (√(26)))))^2 ))         =((√(10))/2) ✓

$${Method}\:{II} \\ $$$${D}\:{as}\:{origin}\:\left(\mathrm{0},\mathrm{0}\right) \\ $$$${say}\:{N}\left({x},{y}\right) \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +\left({a}−{y}\right)^{\mathrm{2}} =\mathrm{1}^{\mathrm{2}} \:\Rightarrow{a}^{\mathrm{2}} −{ay}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left({a}−{x}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} =\left(\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \:\Rightarrow{a}^{\mathrm{2}} −{ax}=\mathrm{4} \\ $$$$\left(\frac{{a}^{\mathrm{2}} −\mathrm{4}}{{a}}\right)^{\mathrm{2}} +\left(\frac{{a}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}}{{a}}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$${a}^{\mathrm{4}} −\mathrm{9}{a}^{\mathrm{2}} +\frac{\mathrm{65}}{\mathrm{4}}=\mathrm{0} \\ $$$$\Rightarrow{a}^{\mathrm{2}} =\frac{\mathrm{13}}{\mathrm{2}}\:\Rightarrow{a}=\sqrt{\frac{\mathrm{13}}{\mathrm{2}}} \\ $$$$\Rightarrow{x}=\frac{\mathrm{5}}{\:\sqrt{\mathrm{26}}} \\ $$$$\Rightarrow{y}=\frac{\mathrm{12}}{\:\sqrt{\mathrm{26}}} \\ $$$${BN}=\sqrt{\left(\sqrt{\frac{\mathrm{13}}{\mathrm{2}}}−\frac{\mathrm{5}}{\:\sqrt{\mathrm{26}}}\right)^{\mathrm{2}} +\left(\sqrt{\frac{\mathrm{13}}{\mathrm{2}}}−\frac{\mathrm{12}}{\:\sqrt{\mathrm{26}}}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{10}}}{\mathrm{2}}\:\checkmark \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com