Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 183690 by paul2222 last updated on 28/Dec/22

Answered by mr W last updated on 29/Dec/22

T_n =(n/a_n )  a_n =1^6 +2^6 +3^6 +...+n^6        =((n(n+1)(2n+1)(3n^4 +6n^3 −3n+1))/(42))  T_n =((42)/((n+1)(2n+1)(3n^4 +6n^3 −3n+1)))  S=Σ_(n=1) ^∞ ((42)/((n+1)(2n+1)(3n^4 +6n^3 −3n+1)))      =42Σ_(n=1) ^∞ [((45n^3 +21n^2 −57n+30)/(31(3n^4 +6n^3 −3n+1)))+((32)/(31(2n+1)))−(1/(n+1))]  .....

$${T}_{{n}} =\frac{{n}}{{a}_{{n}} } \\ $$$${a}_{{n}} =\mathrm{1}^{\mathrm{6}} +\mathrm{2}^{\mathrm{6}} +\mathrm{3}^{\mathrm{6}} +...+{n}^{\mathrm{6}} \\ $$$$\:\:\:\:\:=\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}^{\mathrm{4}} +\mathrm{6}{n}^{\mathrm{3}} −\mathrm{3}{n}+\mathrm{1}\right)}{\mathrm{42}} \\ $$$${T}_{{n}} =\frac{\mathrm{42}}{\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}^{\mathrm{4}} +\mathrm{6}{n}^{\mathrm{3}} −\mathrm{3}{n}+\mathrm{1}\right)} \\ $$$${S}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{42}}{\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}^{\mathrm{4}} +\mathrm{6}{n}^{\mathrm{3}} −\mathrm{3}{n}+\mathrm{1}\right)} \\ $$$$\:\:\:\:=\mathrm{42}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\frac{\mathrm{45}{n}^{\mathrm{3}} +\mathrm{21}{n}^{\mathrm{2}} −\mathrm{57}{n}+\mathrm{30}}{\mathrm{31}\left(\mathrm{3}{n}^{\mathrm{4}} +\mathrm{6}{n}^{\mathrm{3}} −\mathrm{3}{n}+\mathrm{1}\right)}+\frac{\mathrm{32}}{\mathrm{31}\left(\mathrm{2}{n}+\mathrm{1}\right)}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right] \\ $$$$..... \\ $$

Commented by paul2222 last updated on 30/Dec/22

Wow

$$\boldsymbol{{W}}{ow} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com