Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 183440 by aurpeyz last updated on 25/Dec/22

x(t)=2sin(((πt)/3))  y(t)=−3cos(((πt)/3))+4 cm  What is the velocity at t=1s

$${x}\left({t}\right)=\mathrm{2}{sin}\left(\frac{\pi{t}}{\mathrm{3}}\right) \\ $$$${y}\left({t}\right)=−\mathrm{3}{cos}\left(\frac{\pi{t}}{\mathrm{3}}\right)+\mathrm{4}\:{cm} \\ $$$${What}\:{is}\:{the}\:{velocity}\:{at}\:{t}=\mathrm{1}{s} \\ $$

Answered by cortano1 last updated on 26/Dec/22

 v = (dy/dx) , t=1     { (((dy/dt)=π sin (((πt)/3)))),(((dx/dt) = ((2π)/3) cos (((πt)/3)))) :}   (dy/dx) = (dy/dt) .(dt/dx) = π sin (((πt)/3)).(3/(2π cos (((πt)/3)) ))   = (3/2) tan (((πt)/3)) , t=1   ((dy/dx))_(t=1) = (3/2).tan ((π/3))=((3(√3))/2) cm/sec

$$\:{v}\:=\:\frac{{dy}}{{dx}}\:,\:{t}=\mathrm{1}\: \\ $$$$\:\begin{cases}{\frac{{dy}}{{dt}}=\pi\:\mathrm{sin}\:\left(\frac{\pi{t}}{\mathrm{3}}\right)}\\{\frac{{dx}}{{dt}}\:=\:\frac{\mathrm{2}\pi}{\mathrm{3}}\:\mathrm{cos}\:\left(\frac{\pi{t}}{\mathrm{3}}\right)}\end{cases} \\ $$$$\:\frac{{dy}}{{dx}}\:=\:\frac{{dy}}{{dt}}\:.\frac{{dt}}{{dx}}\:=\:\pi\:\mathrm{sin}\:\left(\frac{\pi{t}}{\mathrm{3}}\right).\frac{\mathrm{3}}{\mathrm{2}\pi\:\mathrm{cos}\:\left(\frac{\pi{t}}{\mathrm{3}}\right)\:} \\ $$$$\:=\:\frac{\mathrm{3}}{\mathrm{2}}\:\mathrm{tan}\:\left(\frac{\pi{t}}{\mathrm{3}}\right)\:,\:{t}=\mathrm{1} \\ $$$$\:\left(\frac{{dy}}{{dx}}\right)_{{t}=\mathrm{1}} =\:\frac{\mathrm{3}}{\mathrm{2}}.\mathrm{tan}\:\left(\frac{\pi}{\mathrm{3}}\right)=\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\mathrm{cm}/\mathrm{sec} \\ $$

Commented by mr W last updated on 26/Dec/22

but (dy/dx) is not the velocity, it′s the   direction of velocity.

$${but}\:\frac{{dy}}{{dx}}\:{is}\:{not}\:{the}\:{velocity},\:{it}'{s}\:{the}\: \\ $$$${direction}\:{of}\:{velocity}. \\ $$

Answered by mr W last updated on 26/Dec/22

v_x =(dx/dt)=((2π)/3) cos ((πt)/3)=((2π)/3) cos (π/3)=(π/3)  v_y =(dy/dt)=π sin ((πt)/3)=π sin (π/3)=((π(√3))/2)  v=(√(v_x ^2 +v_y ^2 ))=(√(((π/3))^2 +(((π(√3))/2))^2 ))=((π(√(31)))/6) (m/s)

$${v}_{{x}} =\frac{{dx}}{{dt}}=\frac{\mathrm{2}\pi}{\mathrm{3}}\:\mathrm{cos}\:\frac{\pi{t}}{\mathrm{3}}=\frac{\mathrm{2}\pi}{\mathrm{3}}\:\mathrm{cos}\:\frac{\pi}{\mathrm{3}}=\frac{\pi}{\mathrm{3}} \\ $$$${v}_{{y}} =\frac{{dy}}{{dt}}=\pi\:\mathrm{sin}\:\frac{\pi{t}}{\mathrm{3}}=\pi\:\mathrm{sin}\:\frac{\pi}{\mathrm{3}}=\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${v}=\sqrt{{v}_{{x}} ^{\mathrm{2}} +{v}_{{y}} ^{\mathrm{2}} }=\sqrt{\left(\frac{\pi}{\mathrm{3}}\right)^{\mathrm{2}} +\left(\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} }=\frac{\pi\sqrt{\mathrm{31}}}{\mathrm{6}}\:\frac{{m}}{{s}} \\ $$

Commented by aurpeyz last updated on 26/Dec/22

So final answer will be 2.92? using π=3.142  initially at my first attempt i was confused  how that i will use π as 3.142 and then as  180 for sin and cos

$${So}\:{final}\:{answer}\:{will}\:{be}\:\mathrm{2}.\mathrm{92}?\:{using}\:\pi=\mathrm{3}.\mathrm{142} \\ $$$${initially}\:{at}\:{my}\:{first}\:{attempt}\:{i}\:{was}\:{confused} \\ $$$${how}\:{that}\:{i}\:{will}\:{use}\:\pi\:{as}\:\mathrm{3}.\mathrm{142}\:{and}\:{then}\:{as} \\ $$$$\mathrm{180}\:{for}\:{sin}\:{and}\:{cos} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com