Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 183426 by a.lgnaoui last updated on 25/Dec/22

surface de la partie bleu  du graphe?

$${surface}\:{de}\:{la}\:{partie}\:{bleu} \\ $$$${du}\:{graphe}? \\ $$

Commented by a.lgnaoui last updated on 25/Dec/22

Commented by cherokeesay last updated on 25/Dec/22

Commented by a.lgnaoui last updated on 26/Dec/22

thank you

$${thank}\:{you} \\ $$

Answered by Acem last updated on 26/Dec/22

   Surf.= (1/4) + ∫_1 ^(  (3/2)) ((3/2) x −x^2 )dx   = (1/4) +[ x^2 ((3/4) −(1/3) x)]_1 ^(3/2)    = (1/4) + (9/(16)) − (5/(12)) =  (1/4) +(7/(48))  =   ((19)/(48 )) un^2

$$ \\ $$$$\:{Surf}.=\:\frac{\mathrm{1}}{\mathrm{4}}\:+\:\int_{\mathrm{1}} ^{\:\:\frac{\mathrm{3}}{\mathrm{2}}} \left(\frac{\mathrm{3}}{\mathrm{2}}\:{x}\:−{x}^{\mathrm{2}} \right){dx} \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:+\left[\:{x}^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\:−\frac{\mathrm{1}}{\mathrm{3}}\:{x}\right)\right]_{\mathrm{1}} ^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:+\:\frac{\mathrm{9}}{\mathrm{16}}\:−\:\frac{\mathrm{5}}{\mathrm{12}}\:=\:\:\frac{\mathrm{1}}{\mathrm{4}}\:+\frac{\mathrm{7}}{\mathrm{48}}\:\:=\:\:\:\frac{\mathrm{19}}{\mathrm{48}\:}\:{un}^{\mathrm{2}} \\ $$$$ \\ $$

Commented by a.lgnaoui last updated on 26/Dec/22

thank you

$${thank}\:{you}\: \\ $$

Answered by mr W last updated on 26/Dec/22

a way without integral:  x(x−1)−0.5x=0 ⇒x^2 −1.5x=0  ⇒A_1 =(([(−1.5)^2 −4×1×0]^(3/2) )/(6×1^2 ))=((27)/(48))  x(x−1)−0=0 ⇒x^2 −x=0  ⇒A_2 =(([(−1)^2 −4×1×0]^(3/2) )/(6×1^2 ))=(1/6)  A_(blue) =A_1 −A_2 =((27)/(48))−(1/6)=((19)/(48))  ✓

$$\boldsymbol{{a}}\:\boldsymbol{{way}}\:\boldsymbol{{without}}\:\boldsymbol{{integral}}: \\ $$$${x}\left({x}−\mathrm{1}\right)−\mathrm{0}.\mathrm{5}{x}=\mathrm{0}\:\Rightarrow{x}^{\mathrm{2}} −\mathrm{1}.\mathrm{5}{x}=\mathrm{0} \\ $$$$\Rightarrow{A}_{\mathrm{1}} =\frac{\left[\left(−\mathrm{1}.\mathrm{5}\right)^{\mathrm{2}} −\mathrm{4}×\mathrm{1}×\mathrm{0}\right]^{\mathrm{3}/\mathrm{2}} }{\mathrm{6}×\mathrm{1}^{\mathrm{2}} }=\frac{\mathrm{27}}{\mathrm{48}} \\ $$$${x}\left({x}−\mathrm{1}\right)−\mathrm{0}=\mathrm{0}\:\Rightarrow{x}^{\mathrm{2}} −{x}=\mathrm{0} \\ $$$$\Rightarrow{A}_{\mathrm{2}} =\frac{\left[\left(−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}×\mathrm{1}×\mathrm{0}\right]^{\mathrm{3}/\mathrm{2}} }{\mathrm{6}×\mathrm{1}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$${A}_{{blue}} ={A}_{\mathrm{1}} −{A}_{\mathrm{2}} =\frac{\mathrm{27}}{\mathrm{48}}−\frac{\mathrm{1}}{\mathrm{6}}=\frac{\mathrm{19}}{\mathrm{48}}\:\:\checkmark \\ $$

Commented by Matica last updated on 27/Dec/22

how did you get this formulae?

$${how}\:{did}\:{you}\:{get}\:{this}\:{formulae}? \\ $$

Commented by mr W last updated on 27/Dec/22

A=(((b^2 −4ac)^(3/2) )/(6a^2 ))  for more see Q89781

$${A}=\frac{\left({b}^{\mathrm{2}} −\mathrm{4}{ac}\right)^{\mathrm{3}/\mathrm{2}} }{\mathrm{6}{a}^{\mathrm{2}} } \\ $$$${for}\:{more}\:{see}\:{Q}\mathrm{89781} \\ $$

Commented by Matica last updated on 27/Dec/22

Thank you!

$${Thank}\:{you}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com