Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 183120 by Shrinava last updated on 20/Dec/22

I−Incenter in  △ABC  A(2,2) , B(6,4) , C(4,8) , M(8,6)  Find:   MI = ?

$$\mathrm{I}−\mathrm{Incenter}\:\mathrm{in}\:\:\bigtriangleup\mathrm{ABC} \\ $$$$\mathrm{A}\left(\mathrm{2},\mathrm{2}\right)\:,\:\mathrm{B}\left(\mathrm{6},\mathrm{4}\right)\:,\:\mathrm{C}\left(\mathrm{4},\mathrm{8}\right)\:,\:\mathrm{M}\left(\mathrm{8},\mathrm{6}\right) \\ $$$$\mathrm{Find}:\:\:\:\mathrm{MI}\:=\:? \\ $$

Answered by manolex last updated on 21/Dec/22

I=((Aa+Bb+Cc)/(a+b+c))  a= ∥BC^(→) ∥=(√((4−6)^2 +(8−4)^2 ))=2(√)5  b=∥AC^(→) ∥=(√(2^2 +6^2 ))=2(√(10))  c=∥AB∥=2(√5)  I=(((2,2)2(√5)+(6,4)2(√(10))+(4,8)2(√5))/(4(√5)+2(√(10))))  I= (((4(√5)+12(√(10))+8(√(5  )); 4(√5)+8(√(10))+16(√5)))/(4(√5)+2(√(10))))  I=((4(√(5  ))(3+3(√(2 )) ; 5+2(√2)))/(2(√5)(2+(√2))))  I=2(((3(1+(√2)))/( (√2)(1+(√(2))))) ;((5+2(√2))/( (√2)(1+(√(2))))))  I=(3(√(2   ));  6−(√2))  MI=(√([(3(√2)−8)^2 +(6−(√2)−6)^2 ))  MI=(√(88−48(√2)))  MI=2(√2)  (√(11−6(√2)))  MI=2(√2)((√9)−(√(2)))  MI=2(√(18))−4

$$\mathbb{I}=\frac{{Aa}+\boldsymbol{{B}}{b}+{Cc}}{{a}+{b}+{c}} \\ $$$${a}=\:\parallel\overset{\rightarrow} {{BC}}\parallel=\sqrt{\left(\mathrm{4}−\mathrm{6}\right)^{\mathrm{2}} +\left(\mathrm{8}−\mathrm{4}\right)^{\mathrm{2}} }=\mathrm{2}\sqrt{}\mathrm{5} \\ $$$${b}=\parallel\overset{\rightarrow} {{AC}}\parallel=\sqrt{\mathrm{2}^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{10}} \\ $$$${c}=\parallel{AB}\parallel=\mathrm{2}\sqrt{\mathrm{5}} \\ $$$${I}=\frac{\left(\mathrm{2},\mathrm{2}\right)\mathrm{2}\sqrt{\mathrm{5}}+\left(\mathrm{6},\mathrm{4}\right)\mathrm{2}\sqrt{\mathrm{10}}+\left(\mathrm{4},\mathrm{8}\right)\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{4}\sqrt{\mathrm{5}}+\mathrm{2}\sqrt{\mathrm{10}}} \\ $$$${I}=\:\frac{\left(\mathrm{4}\sqrt{\mathrm{5}}+\mathrm{12}\sqrt{\mathrm{10}}+\mathrm{8}\sqrt{\mathrm{5}\:\:};\:\mathrm{4}\sqrt{\mathrm{5}}+\mathrm{8}\sqrt{\mathrm{10}}+\mathrm{16}\sqrt{\mathrm{5}}\right)}{\mathrm{4}\sqrt{\mathrm{5}}+\mathrm{2}\sqrt{\mathrm{10}}} \\ $$$${I}=\frac{\mathrm{4}\sqrt{\mathrm{5}\:\:}\left(\mathrm{3}+\mathrm{3}\sqrt{\mathrm{2}\:}\:;\:\mathrm{5}+\mathrm{2}\sqrt{\mathrm{2}}\right)}{\mathrm{2}\sqrt{\mathrm{5}}\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)} \\ $$$${I}=\mathrm{2}\left(\frac{\mathrm{3}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}{\:\sqrt{\mathrm{2}}\left(\mathrm{1}+\sqrt{\left.\mathrm{2}\right)}\right.}\:;\frac{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{2}}\left(\mathrm{1}+\sqrt{\left.\mathrm{2}\right)}\right.}\right) \\ $$$${I}=\left(\mathrm{3}\sqrt{\mathrm{2}\:\:\:};\:\:\mathrm{6}−\sqrt{\mathrm{2}}\right) \\ $$$${MI}=\sqrt{\left[\left(\mathrm{3}\sqrt{\mathrm{2}}−\mathrm{8}\right)^{\mathrm{2}} +\left(\mathrm{6}−\sqrt{\mathrm{2}}−\mathrm{6}\right)^{\mathrm{2}} \right.} \\ $$$${MI}=\sqrt{\mathrm{88}−\mathrm{48}\sqrt{\mathrm{2}}} \\ $$$${MI}=\mathrm{2}\sqrt{\mathrm{2}}\:\:\sqrt{\mathrm{11}−\mathrm{6}\sqrt{\mathrm{2}}} \\ $$$${MI}=\mathrm{2}\sqrt{\mathrm{2}}\left(\sqrt{\mathrm{9}}−\sqrt{\left.\mathrm{2}\right)}\right. \\ $$$${MI}=\mathrm{2}\sqrt{\mathrm{18}}−\mathrm{4} \\ $$$$ \\ $$

Answered by manolex last updated on 21/Dec/22

$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com