Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 183084 by Rasheed.Sindhi last updated on 19/Dec/22

Commented by JDamian last updated on 19/Dec/22

Same Q182973  In fact you wrote down the solution

$${Same}\:{Q}\mathrm{182973} \\ $$$${In}\:{fact}\:{you}\:{wrote}\:{down}\:{the}\:{solution} \\ $$

Commented by Rasheed.Sindhi last updated on 19/Dec/22

Question  reposted for new approaches  other than in Q#182973.

$${Question}\:\:{reposted}\:{for}\:\boldsymbol{{new}}\:{approaches} \\ $$$${other}\:{than}\:{in}\:\mathrm{Q}#\mathrm{182973}. \\ $$

Commented by Rasheed.Sindhi last updated on 19/Dec/22

@ JDamian sir, sorry I am late to  post my comment! Actually I want  to post my new answer, without  being unnoticed.

$$@\:{JDamian}\:{sir},\:{sorry}\:{I}\:{am}\:{late}\:{to} \\ $$$${post}\:{my}\:{comment}!\:{Actually}\:{I}\:{want} \\ $$$${to}\:{post}\:{my}\:{new}\:{answer},\:{without} \\ $$$${being}\:{unnoticed}. \\ $$

Answered by Rasheed.Sindhi last updated on 20/Dec/22

  x^2 +x+1=0; Σ_(n=1) ^(27) (x^n +(1/x^n ))^2 =?  x^2 +x+1=0_(⇓)   • determinant (((x^2 =−x−1)))       ⇒x^3 =−x^2 −x=−(−x−1)−x=1⇒  • determinant (((x^3 =1)))    • determinant (((x^2 +1=−x)))  • determinant (((x+1=−x^2 )))    determinant (((Σ_(n=1) ^(27) (x^n +(1/x^n ))^2 _(  ^( _ _ _    )           =Σ_(n=1) ^9 {(x^(3n−2) +(1/x^(3n−2) ))^2 +(x^(3n−1) +(1/x^(3n−1) ))^2 +(x^(3n) +(1/x^(3n) ))^2 })         )))  =Σ_(n=1) ^9 {((x^3 )^n ∙x^(−2) +(1/((x^3 )^n ∙x^(−2) )))^2 +((x^3 )^n ∙x^(−1) +(1/((x^3 )^n ∙x^(−1) )))^2 +((x^3 )^n +(1/((x^3 )^n )))^2 }  =Σ_(n=1) ^9 {((1)^n ∙x^(−2) +(1/((1)^n ∙x^(−2) )))^2 +((1)^n ∙x^(−2) +(1/((1)^n ∙x^(−2) )))^2 +((1)^n +(1/((1)^n )))^2 }  =Σ_(n=1) ^9 {(x^(−2) +(1/x^(−2) ))^2 +(x^(−1) +(1/x^(−1) ))^2 +((1+(1/1))^2 }  =Σ_(n=1) ^9 {(x^2 +(1/x^2 ))^2 +(x+(1/x))^2 +((2)^2 }  =Σ_(n=1) ^9 {(((x^3 ∙x+1)/x^2 ))^2 +(((x^2 +1)/x))^2 +4}  =Σ_(n=1) ^9 {(((x+1)/x^2 ))^2 +(((−x)/x))^2 +4}  =Σ_(n=1) ^9 {(((−x^2 )/x^2 ))^2 +(((−x)/x))^2 +4}  =Σ_(n=1) ^9 {(−1)^2 +(−1)^2 +4}  =Σ_(n=1) ^9 (6)=6×9=54

$$ \\ $$$${x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{0};\:\underset{{n}=\mathrm{1}} {\overset{\mathrm{27}} {\Sigma}}\left({x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} }\right)^{\mathrm{2}} =? \\ $$$$\underset{\Downarrow} {\underbrace{{x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{0}}} \\ $$$$\bullet\begin{array}{|c|}{{x}^{\mathrm{2}} =−{x}−\mathrm{1}}\\\hline\end{array} \\ $$$$\:\:\:\:\:\Rightarrow{x}^{\mathrm{3}} =−{x}^{\mathrm{2}} −{x}=−\left(−{x}−\mathrm{1}\right)−{x}=\mathrm{1}\Rightarrow \\ $$$$\bullet\begin{array}{|c|}{{x}^{\mathrm{3}} =\mathrm{1}}\\\hline\end{array}\:\: \\ $$$$\bullet\begin{array}{|c|}{{x}^{\mathrm{2}} +\mathrm{1}=−{x}}\\\hline\end{array} \\ $$$$\bullet\begin{array}{|c|}{{x}+\mathrm{1}=−{x}^{\mathrm{2}} }\\\hline\end{array}\: \\ $$$$\begin{array}{|c|}{\underset{\:\overset{\underset{\underset{\underset{\:} {\:}} {\:}} {\:}} {\:}\:\:\:\:\:\:\:\:\:\:=\underset{{n}=\mathrm{1}} {\overset{\mathrm{9}} {\sum}}\left\{\left({x}^{\mathrm{3}{n}−\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}{n}−\mathrm{2}} }\right)^{\mathrm{2}} +\left({x}^{\mathrm{3}{n}−\mathrm{1}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}{n}−\mathrm{1}} }\right)^{\mathrm{2}} +\left({x}^{\mathrm{3}{n}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}{n}} }\right)^{\mathrm{2}} \right\}} {\underset{{n}=\mathrm{1}} {\overset{\mathrm{27}} {\sum}}\left({x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} }\right)^{\mathrm{2}} }\:\:\:\:\:\:\:\:}\\\hline\end{array} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\mathrm{9}} {\sum}}\left\{\left(\left({x}^{\mathrm{3}} \right)^{{n}} \centerdot{x}^{−\mathrm{2}} +\frac{\mathrm{1}}{\left({x}^{\mathrm{3}} \right)^{{n}} \centerdot{x}^{−\mathrm{2}} }\right)^{\mathrm{2}} +\left(\left({x}^{\mathrm{3}} \right)^{{n}} \centerdot{x}^{−\mathrm{1}} +\frac{\mathrm{1}}{\left({x}^{\mathrm{3}} \right)^{{n}} \centerdot{x}^{−\mathrm{1}} }\right)^{\mathrm{2}} +\left(\left({x}^{\mathrm{3}} \right)^{{n}} +\frac{\mathrm{1}}{\left({x}^{\mathrm{3}} \right)^{{n}} }\right)^{\mathrm{2}} \right\} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\mathrm{9}} {\sum}}\left\{\left(\left(\mathrm{1}\right)^{{n}} \centerdot{x}^{−\mathrm{2}} +\frac{\mathrm{1}}{\left(\mathrm{1}\right)^{{n}} \centerdot{x}^{−\mathrm{2}} }\right)^{\mathrm{2}} +\left(\left(\mathrm{1}\right)^{{n}} \centerdot{x}^{−\mathrm{2}} +\frac{\mathrm{1}}{\left(\mathrm{1}\right)^{{n}} \centerdot{x}^{−\mathrm{2}} }\right)^{\mathrm{2}} +\left(\left(\mathrm{1}\right)^{{n}} +\frac{\mathrm{1}}{\left(\mathrm{1}\right)^{{n}} }\right)^{\mathrm{2}} \right\} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\mathrm{9}} {\sum}}\left\{\left({x}^{−\mathrm{2}} +\frac{\mathrm{1}}{{x}^{−\mathrm{2}} }\right)^{\mathrm{2}} +\left({x}^{−\mathrm{1}} +\frac{\mathrm{1}}{{x}^{−\mathrm{1}} }\right)^{\mathrm{2}} +\left(\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}}\right)^{\mathrm{2}} \right\}\right. \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\mathrm{9}} {\sum}}\left\{\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{\mathrm{2}} +\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} +\left(\left(\mathrm{2}\right)^{\mathrm{2}} \right\}\right. \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\mathrm{9}} {\sum}}\left\{\left(\frac{{x}^{\mathrm{3}} \centerdot{x}+\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{\mathrm{2}} +\left(\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}}\right)^{\mathrm{2}} +\mathrm{4}\right\} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\mathrm{9}} {\sum}}\left\{\left(\frac{{x}+\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{\mathrm{2}} +\left(\frac{−{x}}{{x}}\right)^{\mathrm{2}} +\mathrm{4}\right\} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\mathrm{9}} {\sum}}\left\{\left(\frac{−{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right)^{\mathrm{2}} +\left(\frac{−{x}}{{x}}\right)^{\mathrm{2}} +\mathrm{4}\right\} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\mathrm{9}} {\sum}}\left\{\left(−\mathrm{1}\right)^{\mathrm{2}} +\left(−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{4}\right\} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\mathrm{9}} {\sum}}\left(\mathrm{6}\right)=\mathrm{6}×\mathrm{9}=\mathrm{54} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com