Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 182984 by Mastermind last updated on 18/Dec/22

Find the equation for the plane  through the point A(6, 2, −4),  B(−2, 4, 8), C(4, −2, 2). −Vector Analysis    M.m

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{for}\:\mathrm{the}\:\mathrm{plane} \\ $$$$\mathrm{through}\:\mathrm{the}\:\mathrm{point}\:\mathrm{A}\left(\mathrm{6},\:\mathrm{2},\:−\mathrm{4}\right), \\ $$$$\mathrm{B}\left(−\mathrm{2},\:\mathrm{4},\:\mathrm{8}\right),\:\mathrm{C}\left(\mathrm{4},\:−\mathrm{2},\:\mathrm{2}\right).\:−\mathrm{Vector}\:\mathrm{Analysis} \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$

Answered by cortano1 last updated on 18/Dec/22

 n^(→)  = AB^(→)  × AC^(→)  =  determinant (((−8       2          12)),((−2    −4         6)))   = (60, 24, 36 )   AX^(→)  = (x−6, y−2, z+4)   eq of plane ⇒ AX^(→)  . n^(→)  = 0  ⇒60(x−6)+24(y−2)+36(z+4)=0  ⇒5x−30+2y−4+3z+12=0  ⇒5x+2y+3z−22=0

$$\:\overset{\rightarrow} {{n}}\:=\:\overset{\rightarrow} {{AB}}\:×\:\overset{\rightarrow} {{AC}}\:=\:\begin{vmatrix}{−\mathrm{8}\:\:\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\mathrm{12}}\\{−\mathrm{2}\:\:\:\:−\mathrm{4}\:\:\:\:\:\:\:\:\:\mathrm{6}}\end{vmatrix} \\ $$$$\:=\:\left(\mathrm{60},\:\mathrm{24},\:\mathrm{36}\:\right) \\ $$$$\:\overset{\rightarrow} {{AX}}\:=\:\left({x}−\mathrm{6},\:{y}−\mathrm{2},\:{z}+\mathrm{4}\right) \\ $$$$\:{eq}\:{of}\:{plane}\:\Rightarrow\:\overset{\rightarrow} {{AX}}\:.\:\overset{\rightarrow} {{n}}\:=\:\mathrm{0} \\ $$$$\Rightarrow\mathrm{60}\left({x}−\mathrm{6}\right)+\mathrm{24}\left({y}−\mathrm{2}\right)+\mathrm{36}\left({z}+\mathrm{4}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{5}{x}−\mathrm{30}+\mathrm{2}{y}−\mathrm{4}+\mathrm{3}{z}+\mathrm{12}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{5}{x}+\mathrm{2}{y}+\mathrm{3}{z}−\mathrm{22}=\mathrm{0}\: \\ $$$$ \\ $$

Answered by mr W last updated on 18/Dec/22

Commented by mr W last updated on 18/Dec/22

AB^(→) =(−8, 2, 12)  AC^(→) =(−2, −4, 6)  n^→ =AB^(→) ×AC^(→) =(−8,2,12)×(−2,−4,6)                            =(60,24,36)  say any point on the plane is  P(x,y,z)  AP^(→) =(x−6, y−2, z+4)  we have AP^(→) ⊥n^(→) ,  ⇒AP^(→) ∙n^(→) =0  ⇒60(x−6)+24(y−2)+36(z+4)=0  ⇒10x+4y+3z−22=0 ✓

$$\overset{\rightarrow} {{AB}}=\left(−\mathrm{8},\:\mathrm{2},\:\mathrm{12}\right) \\ $$$$\overset{\rightarrow} {{AC}}=\left(−\mathrm{2},\:−\mathrm{4},\:\mathrm{6}\right) \\ $$$$\overset{\rightarrow} {{n}}=\overset{\rightarrow} {{AB}}×\overset{\rightarrow} {{AC}}=\left(−\mathrm{8},\mathrm{2},\mathrm{12}\right)×\left(−\mathrm{2},−\mathrm{4},\mathrm{6}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(\mathrm{60},\mathrm{24},\mathrm{36}\right) \\ $$$${say}\:{any}\:{point}\:{on}\:{the}\:{plane}\:{is} \\ $$$${P}\left({x},{y},{z}\right) \\ $$$$\overset{\rightarrow} {{AP}}=\left({x}−\mathrm{6},\:{y}−\mathrm{2},\:{z}+\mathrm{4}\right) \\ $$$${we}\:{have}\:\overset{\rightarrow} {{AP}}\bot\overset{\rightarrow} {{n}}, \\ $$$$\Rightarrow\overset{\rightarrow} {{AP}}\centerdot\overset{\rightarrow} {{n}}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{60}\left({x}−\mathrm{6}\right)+\mathrm{24}\left({y}−\mathrm{2}\right)+\mathrm{36}\left({z}+\mathrm{4}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{10}{x}+\mathrm{4}{y}+\mathrm{3}{z}−\mathrm{22}=\mathrm{0}\:\checkmark \\ $$

Commented by cortano1 last updated on 18/Dec/22

why n^(→)  = (60,24,36)?

$${why}\:\overset{\rightarrow} {{n}}\:=\:\left(\mathrm{60},\mathrm{24},\mathrm{36}\right)? \\ $$

Commented by mr W last updated on 18/Dec/22

n^→ =(−8,2,12)×(−2,−4,6)=(60,24,36)  you got a different n^→ , because you  wrongly took AB^(→) =(−8,2,−12).  please recheck.

$$\overset{\rightarrow} {{n}}=\left(−\mathrm{8},\mathrm{2},\mathrm{12}\right)×\left(−\mathrm{2},−\mathrm{4},\mathrm{6}\right)=\left(\mathrm{60},\mathrm{24},\mathrm{36}\right) \\ $$$${you}\:{got}\:{a}\:{different}\:\overset{\rightarrow} {{n}},\:{because}\:{you} \\ $$$${wrongly}\:{took}\:\overset{\rightarrow} {{AB}}=\left(−\mathrm{8},\mathrm{2},−\mathrm{12}\right). \\ $$$${please}\:{recheck}. \\ $$

Commented by cortano1 last updated on 18/Dec/22

 oohhh yes . but your answer have  a typo

$$\:{oohhh}\:{yes}\:.\:{but}\:{your}\:{answer}\:{have} \\ $$$${a}\:{typo} \\ $$

Commented by mr W last updated on 18/Dec/22

thanks! i have fixed it.

$${thanks}!\:{i}\:{have}\:{fixed}\:{it}. \\ $$

Commented by Mastermind last updated on 18/Dec/22

Thank you boss

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{boss} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com