Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 182940 by mathocean1 last updated on 17/Dec/22

Are Σ_(n≥1) (1/(4n^2 −1)) and   Σ_(n≥1)   (1/(n(n+1)(n+2)))  convergent?

$${Are}\:\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}\:{and}\: \\ $$$$\underset{{n}\geqslant\mathrm{1}} {\sum}\:\:\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}\:\:{convergent}? \\ $$

Answered by JDamian last updated on 17/Dec/22

a_n =(1/(4n^2 −1))=(1/((2n−1)(2n+1)))=  =(1/2)((1/(2n−1))−(1/(2n+1)))   telescoping series  S=(1/2)Σ_(k=1) ^∞ ((1/(2n−1))−(1/(2n+1)))=  =(1/2)((1/1)−(1/3)+(1/3)−(1/5)+(1/5)−(1/7)+ ...)=  =(1/2)[1−lim_(n→∞) ((1/(2n+1)))]=(1/2)

$${a}_{{n}} =\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}=\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\right)\:\:\:{telescoping}\:{series} \\ $$$${S}=\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\right)= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{7}}+\:...\right)= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{1}−\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\right)\right]=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$

Answered by ARUNG_Brandon_MBU last updated on 17/Dec/22

S=Σ_(n≥1) (1/(n(n+1)(n+2)))=Σ_(n≥1) ((1/(2n))−(1/(n+1))+(1/(2(n+2))))     =(1/2)Σ_(n≥1) (1/n)−(Σ_(n≥1) (1/n)−1)+(1/2)(Σ_(n≥1) (1/n)−1−(1/2))     =1−(1/2)(1+(1/2))=1−(3/4)=(1/4)

$${S}=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}=\underset{{n}\geqslant\mathrm{1}} {\sum}\left(\frac{\mathrm{1}}{\mathrm{2}{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{2}\right)}\right) \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{{n}}−\left(\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{{n}}−\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{2}}\left(\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{{n}}−\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\:\:\:=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{1}−\frac{\mathrm{3}}{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com