Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 18284 by tawa tawa last updated on 18/Jul/17

If k is any possible number. what is the size of angle between the vectors  a(K, k) and b(− 3, 4)

$$\mathrm{If}\:\mathrm{k}\:\mathrm{is}\:\mathrm{any}\:\mathrm{possible}\:\mathrm{number}.\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{size}\:\mathrm{of}\:\mathrm{angle}\:\mathrm{between}\:\mathrm{the}\:\mathrm{vectors} \\ $$$$\mathrm{a}\left(\mathrm{K},\:\mathrm{k}\right)\:\mathrm{and}\:\mathrm{b}\left(−\:\mathrm{3},\:\mathrm{4}\right) \\ $$

Answered by Arnab Maiti last updated on 18/Jul/17

let A^→ =Ki^� +kj^�   B^→ =−3i^� +4j^�   A^→ .B^→ =−3K+4k  B^→ .B^→ =B^2 =9+16=25  B=5  A^→ .A^→ =A^2 =K^2 +k^2   A=(√(K^2 +k^2 ))  A^→ .B^→ =ABcosθ  cosθ=((−3K+4k)/(5(√(K^2 +k^2 ))))  θ=cos^(−1) (((−3K+4k)/(5(√(K^2 +k^2 )))))

$$\mathrm{let}\:\overset{\rightarrow} {\mathrm{A}}=\mathrm{K}\hat {\mathrm{i}}+\mathrm{k}\hat {\mathrm{j}} \\ $$$$\overset{\rightarrow} {\mathrm{B}}=−\mathrm{3}\hat {\mathrm{i}}+\mathrm{4}\hat {\mathrm{j}} \\ $$$$\overset{\rightarrow} {\mathrm{A}}.\overset{\rightarrow} {\mathrm{B}}=−\mathrm{3K}+\mathrm{4k} \\ $$$$\overset{\rightarrow} {\mathrm{B}}.\overset{\rightarrow} {\mathrm{B}}=\mathrm{B}^{\mathrm{2}} =\mathrm{9}+\mathrm{16}=\mathrm{25} \\ $$$$\mathrm{B}=\mathrm{5} \\ $$$$\overset{\rightarrow} {\mathrm{A}}.\overset{\rightarrow} {\mathrm{A}}=\mathrm{A}^{\mathrm{2}} =\mathrm{K}^{\mathrm{2}} +\mathrm{k}^{\mathrm{2}} \\ $$$$\mathrm{A}=\sqrt{\mathrm{K}^{\mathrm{2}} +\mathrm{k}^{\mathrm{2}} } \\ $$$$\overset{\rightarrow} {\mathrm{A}}.\overset{\rightarrow} {\mathrm{B}}=\mathrm{ABcos}\theta \\ $$$$\mathrm{cos}\theta=\frac{−\mathrm{3K}+\mathrm{4k}}{\mathrm{5}\sqrt{\mathrm{K}^{\mathrm{2}} +\mathrm{k}^{\mathrm{2}} }} \\ $$$$\theta=\mathrm{cos}^{−\mathrm{1}} \left(\frac{−\mathrm{3K}+\mathrm{4k}}{\mathrm{5}\sqrt{\mathrm{K}^{\mathrm{2}} +\mathrm{k}^{\mathrm{2}} }}\right) \\ $$

Commented by tawa tawa last updated on 18/Jul/17

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com