Question Number 182791 by Matica last updated on 14/Dec/22 | ||
$$\:{We}\:{have}\:\mathrm{0}<{x}<{a}\:{and}\:{m},{n}\:\in\mathbb{N}. \\ $$ $$\:{Prove}\:{x}^{{m}} \left({a}−{x}\right)^{{n}} \leqslant\:\frac{{m}^{{m}} {n}^{{n}} }{\left({m}+{n}\right)^{{m}+{n}} }\centerdot{a}^{{m}+{n}} \\ $$ | ||
Answered by mahdipoor last updated on 14/Dec/22 | ||
$${get}\:{f}\left({x}\right)={x}^{{m}} \left({a}−{x}\right)^{{n}} \:\:\:\:\:\:\mathrm{0}<{x}<{a} \\ $$ $$\frac{{df}}{{dx}}={mx}^{{m}−\mathrm{1}} \left({a}−{x}\right)^{{n}} −{n}\left({a}−{x}\right)^{{n}−\mathrm{1}} {x}^{{m}} =\mathrm{0} \\ $$ $$=\left({a}−{x}\right)^{{n}−\mathrm{1}} {x}^{{m}−\mathrm{1}} \left({m}\left({a}−{x}\right)−{nx}\right)\Rightarrow{x}=\frac{{ma}}{{m}+{n}} \\ $$ $${max}\:{f}={f}\left(\frac{{ma}}{{m}+{n}}\right)=\frac{{m}^{{m}} {n}^{{n}} {a}^{{m}+{n}} }{\left({m}+{n}\right)^{{m}+{n}} } \\ $$ $${f}\leqslant{max}\:{f}\Rightarrow\:\:{x}^{{m}} \left({a}−{x}\right)^{{n}} \leqslant\frac{{m}^{{m}} {n}^{{n}} {a}^{{m}+{n}} }{\left({m}+{n}\right)^{{m}+{n}} } \\ $$ $$ \\ $$ | ||
Commented byMatica last updated on 15/Dec/22 | ||
$${thank}\:{you}\:\:{a}\:{lot} \\ $$ | ||
Answered by dre23 last updated on 15/Dec/22 | ||
$${x}^{{m}} \left(\mathrm{1}−{x}\right)^{{n}} \leqslant\frac{{m}^{{m}} {n}^{{n}} }{\left({m}+{n}\right)^{{m}+{n}} },....{S} \\ $$ $${by}\:{x}\rightarrow{ax}\Leftrightarrow\forall\:\mathrm{0}<{x}<\mathrm{1}\:.....{S} \\ $$ $$\Leftrightarrow\left(\frac{{x}}{{m}}\right)^{{m}} \left(\frac{\mathrm{1}−{x}}{{n}}\right)^{{n}} \leqslant\frac{\mathrm{1}}{\left({n}+{m}\right)^{{n}+{m}} }\Leftrightarrow{S} \\ $$ $${mln}\left(\frac{{x}}{{m}}\right)+{nln}\left(\frac{\mathrm{1}−{x}}{{n}}\right)....{S} \\ $$ $$\left.{x}\left.\overset{{f}} {\rightarrow}{ln}\left({x}\right)\:{is}\:{concave},{f}''=−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }<\mathrm{0},\forall{x}\in\right]\mathrm{0},\mathrm{1}\right] \\ $$ $$\frac{{m}}{{n}+{m}}{ln}\left(\frac{{x}}{{m}}\right)+\frac{{n}}{{n}+{m}}{ln}\left(\frac{\mathrm{1}−{x}}{{n}}\right)\leqslant{ln}\left(\frac{\mathrm{1}}{{n}+{m}}\right) \\ $$ $$\left({n}+{m}\right)\left\{\frac{{m}}{{m}+{n}}{ln}\left(\frac{{x}}{{m}}\right)+\frac{{n}}{{n}+{m}}{ln}\left(\frac{\mathrm{1}−{x}}{{n}}\right)\right\}\leqslant \\ $$ $$\left({n}+{m}\right){ln}\left(\frac{{x}}{{n}+{m}}+\frac{\mathrm{1}−{x}}{{n}+{m}}\right)\leqslant\left({n}+{m}\right){ln}\left(\frac{\mathrm{1}}{{n}+{m}}\right)={ln}\left(\frac{\mathrm{1}}{\left({n}+{m}\right)^{{n}+{m}} }\right) \\ $$ $$\Leftrightarrow{s}\leqslant{ln}\left(\frac{\mathrm{1}}{\left({n}+{m}\right)^{{n}+{m}} }\right)\:{tack}\:{e} \\ $$ $$\Leftrightarrow\left(\frac{{x}}{{m}}\right)^{{m}} \left(\frac{\mathrm{1}−{x}}{{n}}\right)^{{n}} \leqslant\left(\frac{\mathrm{1}}{{n}+{m}}\right)^{{n}+{m}} ..{True} \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$ | ||