Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 182593 by srikanth2684 last updated on 11/Dec/22

Commented by srikanth2684 last updated on 14/Dec/22

sol pls

$${sol}\:{pls} \\ $$

Answered by TheSupreme last updated on 15/Dec/22

(√)(x−2)^2 +6^2 +(√((12−x)^2 +4^2 ))=d  (x−2)^2 +6^2 −(12−x)^2 −4^2 −d^2 =−2d(√((12−x)^2 +4^2 ))  −4x+4+36−12^2 +24x−16−d^2 =−2d(√((12−x)^2 +4^2 ))  20x−144+40−16−d^2 =−2d(√((12−x)^2 +4^2 ))

$$\sqrt{}\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} +\sqrt{\left(\mathrm{12}−{x}\right)^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} }={d} \\ $$$$\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} −\left(\mathrm{12}−{x}\right)^{\mathrm{2}} −\mathrm{4}^{\mathrm{2}} −{d}^{\mathrm{2}} =−\mathrm{2}{d}\sqrt{\left(\mathrm{12}−{x}\right)^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} } \\ $$$$−\mathrm{4}{x}+\mathrm{4}+\mathrm{36}−\mathrm{12}^{\mathrm{2}} +\mathrm{24}{x}−\mathrm{16}−{d}^{\mathrm{2}} =−\mathrm{2}{d}\sqrt{\left(\mathrm{12}−{x}\right)^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} } \\ $$$$\mathrm{20}{x}−\mathrm{144}+\mathrm{40}−\mathrm{16}−{d}^{\mathrm{2}} =−\mathrm{2}{d}\sqrt{\left(\mathrm{12}−{x}\right)^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com