Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 182546 by Acem last updated on 11/Dec/22

Commented by Acem last updated on 11/Dec/22

Modify: Find the greatest and the least angles                      in rad.

$${Modify}:\:{Find}\:{the}\:{greatest}\:{and}\:{the}\:{least}\:{angles} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{in}\:{rad}. \\ $$

Answered by Rasheed.Sindhi last updated on 11/Dec/22

Angles:  a,a+d,a+2d,a+3d  •   a+3d=2a⇒a=3d  •   3d+4d+5d+6d=2π (Sum of angles)  18d=2π⇒d=(π/9)  3((π/9)),4((π/9)),5((π/9)),6((π/9))  (π/3),((4π)/9),((5π)/9),((2π)/3)

$${Angles}:\:\:{a},{a}+{d},{a}+\mathrm{2}{d},{a}+\mathrm{3}{d} \\ $$$$\bullet\:\:\:{a}+\mathrm{3}{d}=\mathrm{2}{a}\Rightarrow{a}=\mathrm{3}{d} \\ $$$$\bullet\:\:\:\mathrm{3}{d}+\mathrm{4}{d}+\mathrm{5}{d}+\mathrm{6}{d}=\mathrm{2}\pi\:\left({Sum}\:{of}\:{angles}\right) \\ $$$$\mathrm{18}{d}=\mathrm{2}\pi\Rightarrow{d}=\frac{\pi}{\mathrm{9}} \\ $$$$\mathrm{3}\left(\frac{\pi}{\mathrm{9}}\right),\mathrm{4}\left(\frac{\pi}{\mathrm{9}}\right),\mathrm{5}\left(\frac{\pi}{\mathrm{9}}\right),\mathrm{6}\left(\frac{\pi}{\mathrm{9}}\right) \\ $$$$\frac{\pi}{\mathrm{3}},\frac{\mathrm{4}\pi}{\mathrm{9}},\frac{\mathrm{5}\pi}{\mathrm{9}},\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$

Commented by Acem last updated on 11/Dec/22

I have a question:  I tried to assune that the angles are:   (x+ 3y)° , (x+ y)° , (x−y)° , (x−3y)°   and got the same your angles     Then i assumed that the angles are:   (x+ 2y)° , (x+ y)° , (x−y)° , (x−2y)°   and got: (π/3), ((7π)/(12)), ((15π)/(36)) , ((2π)/3)   why aren′t they the same?

$${I}\:{have}\:{a}\:{question}: \\ $$$${I}\:{tried}\:{to}\:{assune}\:{that}\:{the}\:{angles}\:{are}: \\ $$$$\:\left({x}+\:\mathrm{3}{y}\right)°\:,\:\left({x}+\:{y}\right)°\:,\:\left({x}−{y}\right)°\:,\:\left({x}−\mathrm{3}{y}\right)° \\ $$$$\:{and}\:{got}\:{the}\:{same}\:{your}\:{angles} \\ $$$$ \\ $$$$\:{Then}\:{i}\:{assumed}\:{that}\:{the}\:{angles}\:{are}: \\ $$$$\:\left({x}+\:\mathrm{2}{y}\right)°\:,\:\left({x}+\:{y}\right)°\:,\:\left({x}−{y}\right)°\:,\:\left({x}−\mathrm{2}{y}\right)° \\ $$$$\:{and}\:{got}:\:\frac{\pi}{\mathrm{3}},\:\frac{\mathrm{7}\pi}{\mathrm{12}},\:\frac{\mathrm{15}\pi}{\mathrm{36}}\:,\:\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$$\:{why}\:{aren}'{t}\:{they}\:{the}\:{same}? \\ $$$$\: \\ $$

Commented by mr W last updated on 11/Dec/22

in way 1 the difference between any   two consecutive terms is −2y. that′s  correct.  in way 2 the difference between the  first and the second term as well as   between the third and fourth term  is −y, but it′s −2y between the second and  the third term. this is not a A.P. !

$${in}\:{way}\:\mathrm{1}\:{the}\:{difference}\:{between}\:{any}\: \\ $$$${two}\:{consecutive}\:{terms}\:{is}\:−\mathrm{2}{y}.\:{that}'{s} \\ $$$${correct}. \\ $$$${in}\:{way}\:\mathrm{2}\:{the}\:{difference}\:{between}\:{the} \\ $$$${first}\:{and}\:{the}\:{second}\:{term}\:{as}\:{well}\:{as}\: \\ $$$${between}\:{the}\:{third}\:{and}\:{fourth}\:{term} \\ $$$${is}\:−{y},\:{but}\:{it}'{s}\:−\mathrm{2}{y}\:{between}\:{the}\:{second}\:{and} \\ $$$${the}\:{third}\:{term}.\:{this}\:{is}\:{not}\:{a}\:{A}.{P}.\:! \\ $$

Commented by Rasheed.Sindhi last updated on 11/Dec/22

Thanksss mr W sir!

$$\mathcal{T}{hanksss}\:\boldsymbol{{mr}}\:\boldsymbol{{W}}\:\boldsymbol{{sir}}! \\ $$

Answered by manxsol last updated on 11/Dec/22

a+(a+r)+(a+2r)+(a+3r)=360  a+3r=2a⇒a=3r  angles   3r+4r+5r+6r=2π                              18r=2π                                  r=(π/9)  greast    ((2π)/3)  least       ((   π)/( 3))

$${a}+\left({a}+{r}\right)+\left({a}+\mathrm{2}{r}\right)+\left({a}+\mathrm{3}{r}\right)=\mathrm{360} \\ $$$${a}+\mathrm{3}{r}=\mathrm{2}{a}\Rightarrow{a}=\mathrm{3}{r} \\ $$$${angles}\:\:\:\mathrm{3}{r}+\mathrm{4}{r}+\mathrm{5}{r}+\mathrm{6}{r}=\mathrm{2}\pi \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{18}{r}=\mathrm{2}\pi \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{r}=\frac{\pi}{\mathrm{9}} \\ $$$${greast}\:\:\:\:\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$${least}\:\:\:\:\:\:\:\frac{\:\:\:\pi}{\:\mathrm{3}} \\ $$$$ \\ $$$$ \\ $$

Commented by Acem last updated on 11/Dec/22

Thanksss!

$${Thanksss}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com