Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 182494 by universe last updated on 10/Dec/22

Commented by cortano1 last updated on 11/Dec/22

(c) π

$$\left(\mathrm{c}\right)\:\pi \\ $$

Commented by mr W last updated on 11/Dec/22

but the curve doesn′t enclose an area!  t→∞ (x,y) ⇒(−∞,0)  t→−∞ (x,y) ⇒(∞,0)

$${but}\:{the}\:{curve}\:{doesn}'{t}\:{enclose}\:{an}\:{area}! \\ $$$${t}\rightarrow\infty\:\left({x},{y}\right)\:\Rightarrow\left(−\infty,\mathrm{0}\right) \\ $$$${t}\rightarrow−\infty\:\left({x},{y}\right)\:\Rightarrow\left(\infty,\mathrm{0}\right) \\ $$

Commented by mr W last updated on 11/Dec/22

Commented by Frix last updated on 11/Dec/22

It′s one of these questions where we have to  guess what′s really meant. If t^3  is really  t^2  we can find the answer π.

$$\mathrm{It}'\mathrm{s}\:\mathrm{one}\:\mathrm{of}\:\mathrm{these}\:\mathrm{questions}\:\mathrm{where}\:\mathrm{we}\:\mathrm{have}\:\mathrm{to} \\ $$$$\mathrm{guess}\:\mathrm{what}'\mathrm{s}\:{really}\:\mathrm{meant}.\:\mathrm{If}\:{t}^{\mathrm{3}} \:\mathrm{is}\:{really} \\ $$$${t}^{\mathrm{2}} \:\mathrm{we}\:\mathrm{can}\:\mathrm{find}\:\mathrm{the}\:\mathrm{answer}\:\pi. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com