Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 182461 by HeferH last updated on 09/Dec/22

Let x be a positive integer multiple of 17  that satisfies the inequality:   0 < ((5(x − 120))/x) < 1   Find the value of x.

$${Let}\:{x}\:{be}\:{a}\:{positive}\:{integer}\:{multiple}\:{of}\:\mathrm{17} \\ $$ $${that}\:{satisfies}\:{the}\:{inequality}: \\ $$ $$\:\mathrm{0}\:<\:\frac{\mathrm{5}\left({x}\:−\:\mathrm{120}\right)}{{x}}\:<\:\mathrm{1} \\ $$ $$\:{Find}\:{the}\:{value}\:{of}\:{x}. \\ $$

Answered by mr W last updated on 09/Dec/22

x=17k  0<((5(17k−120))/(17k))<1  0<85k−600<17k  600<85k ⇒k>((600)/(85)) ⇒k≥8  68k<600 ⇒k<((600)/(68)) ⇒k≤8  ⇒k=8 ⇒x=17×8=136 ✓

$${x}=\mathrm{17}{k} \\ $$ $$\mathrm{0}<\frac{\mathrm{5}\left(\mathrm{17}{k}−\mathrm{120}\right)}{\mathrm{17}{k}}<\mathrm{1} \\ $$ $$\mathrm{0}<\mathrm{85}{k}−\mathrm{600}<\mathrm{17}{k} \\ $$ $$\mathrm{600}<\mathrm{85}{k}\:\Rightarrow{k}>\frac{\mathrm{600}}{\mathrm{85}}\:\Rightarrow{k}\geqslant\mathrm{8} \\ $$ $$\mathrm{68}{k}<\mathrm{600}\:\Rightarrow{k}<\frac{\mathrm{600}}{\mathrm{68}}\:\Rightarrow{k}\leqslant\mathrm{8} \\ $$ $$\Rightarrow{k}=\mathrm{8}\:\Rightarrow{x}=\mathrm{17}×\mathrm{8}=\mathrm{136}\:\checkmark \\ $$

Answered by MJS_new last updated on 09/Dec/22

x=17n  0<((85n−600)/(17n))<1  0<85n−600<17n  600<85n<17n+600  ((120)/(17))<n<(n/5)+((120)/(17))  7.05...<n<(n/5)+7.05...  n_(min) =8 and because of 9>(9/5)+7.05... it′s the  only solution  ⇒ x=8×17=136

$${x}=\mathrm{17}{n} \\ $$ $$\mathrm{0}<\frac{\mathrm{85}{n}−\mathrm{600}}{\mathrm{17}{n}}<\mathrm{1} \\ $$ $$\mathrm{0}<\mathrm{85}{n}−\mathrm{600}<\mathrm{17}{n} \\ $$ $$\mathrm{600}<\mathrm{85}{n}<\mathrm{17}{n}+\mathrm{600} \\ $$ $$\frac{\mathrm{120}}{\mathrm{17}}<{n}<\frac{{n}}{\mathrm{5}}+\frac{\mathrm{120}}{\mathrm{17}} \\ $$ $$\mathrm{7}.\mathrm{05}...<{n}<\frac{{n}}{\mathrm{5}}+\mathrm{7}.\mathrm{05}... \\ $$ $${n}_{\mathrm{min}} =\mathrm{8}\:\mathrm{and}\:\mathrm{because}\:\mathrm{of}\:\mathrm{9}>\frac{\mathrm{9}}{\mathrm{5}}+\mathrm{7}.\mathrm{05}...\:\mathrm{it}'\mathrm{s}\:\mathrm{the} \\ $$ $$\mathrm{only}\:\mathrm{solution} \\ $$ $$\Rightarrow\:{x}=\mathrm{8}×\mathrm{17}=\mathrm{136} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com