Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 182375 by Acem last updated on 08/Dec/22

Commented by Acem last updated on 08/Dec/22

 I just solved it, 2 sec ago,    φ ∈ ]20, 27[   Btw extend of NA intersects with extend of PC   at point ∈ this circle   Hope you success to find φ !

$$\:{I}\:{just}\:{solved}\:{it},\:\mathrm{2}\:{sec}\:{ago},\: \\ $$$$\left.\:\phi\:\in\:\right]\mathrm{20},\:\mathrm{27}\left[\right. \\ $$$$\:{Btw}\:{extend}\:{of}\:{NA}\:{intersects}\:{with}\:{extend}\:{of}\:{PC} \\ $$$$\:{at}\:{point}\:\in\:{this}\:{circle} \\ $$$$\:{Hope}\:{you}\:{success}\:{to}\:{find}\:\phi\:! \\ $$

Answered by mr W last updated on 08/Dec/22

Commented by Acem last updated on 08/Dec/22

Now your answer is correct! very good and thanks

$${Now}\:{your}\:{answer}\:{is}\:{correct}!\:{very}\:{good}\:{and}\:{thanks} \\ $$

Commented by mr W last updated on 08/Dec/22

cos α=((x^2 +6^2 −4^2 )/(2×6x))=((x^2 +20)/(12x))  cos β=(x/(2×6))=(x/(12))=sin α  (((x^2 +20)/(12x)))^2 +((x/(12)))^2 =1  ((x^4 +40x^2 +400)/x^2 )+x^2 =144  x^4 −52x^2 +200=0  x^2 =26+2(√(119))  cos φ=((((√2)x)^2 −4^2 −6^2 )/(2×4×6))=((x^2 −26)/(24))=((√(119))/(12))  φ=cos^(−1) ((√(119))/(12))≈24.6°

$$\mathrm{cos}\:\alpha=\frac{{x}^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} −\mathrm{4}^{\mathrm{2}} }{\mathrm{2}×\mathrm{6}{x}}=\frac{{x}^{\mathrm{2}} +\mathrm{20}}{\mathrm{12}{x}} \\ $$$$\mathrm{cos}\:\beta=\frac{{x}}{\mathrm{2}×\mathrm{6}}=\frac{{x}}{\mathrm{12}}=\mathrm{sin}\:\alpha \\ $$$$\left(\frac{{x}^{\mathrm{2}} +\mathrm{20}}{\mathrm{12}{x}}\right)^{\mathrm{2}} +\left(\frac{{x}}{\mathrm{12}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{4}} +\mathrm{40}{x}^{\mathrm{2}} +\mathrm{400}}{{x}^{\mathrm{2}} }+{x}^{\mathrm{2}} =\mathrm{144} \\ $$$${x}^{\mathrm{4}} −\mathrm{52}{x}^{\mathrm{2}} +\mathrm{200}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} =\mathrm{26}+\mathrm{2}\sqrt{\mathrm{119}} \\ $$$$\mathrm{cos}\:\phi=\frac{\left(\sqrt{\mathrm{2}}{x}\right)^{\mathrm{2}} −\mathrm{4}^{\mathrm{2}} −\mathrm{6}^{\mathrm{2}} }{\mathrm{2}×\mathrm{4}×\mathrm{6}}=\frac{{x}^{\mathrm{2}} −\mathrm{26}}{\mathrm{24}}=\frac{\sqrt{\mathrm{119}}}{\mathrm{12}} \\ $$$$\phi=\mathrm{cos}^{−\mathrm{1}} \frac{\sqrt{\mathrm{119}}}{\mathrm{12}}\approx\mathrm{24}.\mathrm{6}° \\ $$

Answered by Acem last updated on 08/Dec/22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com