Question and Answers Forum

All Questions      Topic List

Probability and Statistics Questions

Previous in All Question      Next in All Question      

Previous in Probability and Statistics      Next in Probability and Statistics      

Question Number 182360 by Rasheed.Sindhi last updated on 08/Dec/22

In equation ax^2 +bx+c=0, a,b,c are  randomly selected from integers;  what is the probability that roots  will be real?

$$\mathrm{In}\:\mathrm{equation}\:\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}=\mathrm{0},\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{are} \\ $$$$\mathrm{randomly}\:\mathrm{selected}\:\mathrm{from}\:\mathrm{integers}; \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{roots} \\ $$$$\mathrm{will}\:\mathrm{be}\:\mathrm{real}? \\ $$

Commented by mr W last updated on 08/Dec/22

i′m not sure if there is a solution.  but i think there is a solution when  the question is e.g. like a,b,c ∈R, and   0≤a,b,c≤10. in this case we have  p=((5+6 ln 2)/(36))≈25.4%, see below. please  check.

$${i}'{m}\:{not}\:{sure}\:{if}\:{there}\:{is}\:{a}\:{solution}. \\ $$$${but}\:{i}\:{think}\:{there}\:{is}\:{a}\:{solution}\:{when} \\ $$$${the}\:{question}\:{is}\:{e}.{g}.\:{like}\:{a},{b},{c}\:\in{R},\:{and}\: \\ $$$$\mathrm{0}\leqslant{a},{b},{c}\leqslant\mathrm{10}.\:{in}\:{this}\:{case}\:{we}\:{have} \\ $$$${p}=\frac{\mathrm{5}+\mathrm{6}\:\mathrm{ln}\:\mathrm{2}}{\mathrm{36}}\approx\mathrm{25}.\mathrm{4\%},\:{see}\:{below}.\:{please} \\ $$$${check}. \\ $$

Commented by mr W last updated on 08/Dec/22

this is a nice question. i hope you  have a solution for a,b,c as integers.

$${this}\:{is}\:{a}\:{nice}\:{question}.\:{i}\:{hope}\:{you} \\ $$$${have}\:{a}\:{solution}\:{for}\:{a},{b},{c}\:{as}\:{integers}. \\ $$

Commented by Rasheed.Sindhi last updated on 09/Dec/22

No sir,I  know nothing about  answer/solution.Actually it′s beyond  my capacity! But only question  raised in my mind and I threw  it for discussion.

$${No}\:\boldsymbol{{sir}},{I}\:\:{know}\:{nothing}\:{about} \\ $$$${answer}/{solution}.{Actually}\:{it}'{s}\:{beyond} \\ $$$${my}\:{capacity}!\:{But}\:{only}\:{question} \\ $$$${raised}\:{in}\:{my}\:{mind}\:{and}\:{I}\:{threw} \\ $$$${it}\:{for}\:{discussion}. \\ $$

Commented by mr W last updated on 09/Dec/22

i see, thanks!  i think we can′t answer the question,  if we don′t restrain the range of the  values. that′s the same as we can′t  determine the probability of drawing  a black ball from a bag, if we don′t   know how many balls are in the bag  or if the number of balls in the bag is  infinite. an other issue is, when   a,b,c are integers in a given range,  say −10≤a≤20, 10≤b≤50, −20≤c≤0  we can solve it, but we have to check   all 31×41×21=26691 discrete points   one after one to see which points   fulfill  b^2 ≥4ac and get the number   of such points, say n_1 . then we can   calculate the probability p=(n_1 /(26691)).   this is an easy but tough and stupid   process.  but when a,b,c are not discrete integer  values, but continuous real values in  a given range, we can apply functions  and their integrals to find the  probability as i showed below.  any way, thank you for creating a  very interesting question!

$${i}\:{see},\:{thanks}! \\ $$$${i}\:{think}\:{we}\:{can}'{t}\:{answer}\:{the}\:{question}, \\ $$$${if}\:{we}\:{don}'{t}\:{restrain}\:{the}\:{range}\:{of}\:{the} \\ $$$${values}.\:{that}'{s}\:{the}\:{same}\:{as}\:{we}\:{can}'{t} \\ $$$${determine}\:{the}\:{probability}\:{of}\:{drawing} \\ $$$${a}\:{black}\:{ball}\:{from}\:{a}\:{bag},\:{if}\:{we}\:{don}'{t}\: \\ $$$${know}\:{how}\:{many}\:{balls}\:{are}\:{in}\:{the}\:{bag} \\ $$$${or}\:{if}\:{the}\:{number}\:{of}\:{balls}\:{in}\:{the}\:{bag}\:{is} \\ $$$${infinite}.\:{an}\:{other}\:{issue}\:{is},\:{when}\: \\ $$$${a},{b},{c}\:{are}\:{integers}\:{in}\:{a}\:{given}\:{range}, \\ $$$${say}\:−\mathrm{10}\leqslant{a}\leqslant\mathrm{20},\:\mathrm{10}\leqslant{b}\leqslant\mathrm{50},\:−\mathrm{20}\leqslant{c}\leqslant\mathrm{0} \\ $$$${we}\:{can}\:{solve}\:{it},\:{but}\:{we}\:{have}\:{to}\:{check}\: \\ $$$${all}\:\mathrm{31}×\mathrm{41}×\mathrm{21}=\mathrm{26691}\:{discrete}\:{points}\: \\ $$$${one}\:{after}\:{one}\:{to}\:{see}\:{which}\:{points}\: \\ $$$${fulfill}\:\:{b}^{\mathrm{2}} \geqslant\mathrm{4}{ac}\:{and}\:{get}\:{the}\:{number}\: \\ $$$${of}\:{such}\:{points},\:{say}\:{n}_{\mathrm{1}} .\:{then}\:{we}\:{can}\: \\ $$$${calculate}\:{the}\:{probability}\:{p}=\frac{{n}_{\mathrm{1}} }{\mathrm{26691}}.\: \\ $$$${this}\:{is}\:{an}\:{easy}\:{but}\:{tough}\:{and}\:{stupid}\: \\ $$$${process}. \\ $$$${but}\:{when}\:{a},{b},{c}\:{are}\:{not}\:{discrete}\:{integer} \\ $$$${values},\:{but}\:{continuous}\:{real}\:{values}\:{in} \\ $$$${a}\:{given}\:{range},\:{we}\:{can}\:{apply}\:{functions} \\ $$$${and}\:{their}\:{integrals}\:{to}\:{find}\:{the} \\ $$$${probability}\:{as}\:{i}\:{showed}\:{below}. \\ $$$${any}\:{way},\:{thank}\:{you}\:{for}\:{creating}\:{a} \\ $$$${very}\:{interesting}\:{question}! \\ $$

Commented by Rasheed.Sindhi last updated on 09/Dec/22

Grateful sir, for your very deep disscussion  and for your very precious time!

$$\mathbb{G}\boldsymbol{\mathrm{rateful}}\:\boldsymbol{\mathrm{sir}},\:\mathrm{for}\:\mathrm{your}\:\boldsymbol{\mathrm{very}}\:\boldsymbol{\mathrm{deep}}\:\mathrm{disscussion} \\ $$$$\mathrm{and}\:\mathrm{for}\:\mathrm{your}\:\boldsymbol{\mathrm{very}}\:\boldsymbol{\mathrm{precious}}\:\mathrm{time}! \\ $$

Answered by mr W last updated on 09/Dec/22

say the question is:  a,b,c ∈R and 0≤a,b,c≤10.  we know the equation at^2 +bt+c=0  has real roots, when b^2 ≥4ac.  let a=x, c=y, b=z.  each randomly selected values for  a,b,c represent a point inside the cube  10×10×10. the equation has real  roots, when the point lies inside the  zone b^2 ≥4ac, i.e. z^2 ≥4xy. that′s the  hatched areas in the diagram.  the probability that the roots are  real is then  p=((volume of the zone z^2 ≥4xy)/(volume of the cube))

$${say}\:{the}\:{question}\:{is}: \\ $$$${a},{b},{c}\:\in{R}\:{and}\:\mathrm{0}\leqslant{a},{b},{c}\leqslant\mathrm{10}. \\ $$$${we}\:{know}\:{the}\:{equation}\:{at}^{\mathrm{2}} +{bt}+{c}=\mathrm{0} \\ $$$${has}\:{real}\:{roots},\:{when}\:{b}^{\mathrm{2}} \geqslant\mathrm{4}{ac}. \\ $$$${let}\:{a}={x},\:{c}={y},\:{b}={z}. \\ $$$${each}\:{randomly}\:{selected}\:{values}\:{for} \\ $$$${a},{b},{c}\:{represent}\:{a}\:{point}\:{inside}\:{the}\:{cube} \\ $$$$\mathrm{10}×\mathrm{10}×\mathrm{10}.\:{the}\:{equation}\:{has}\:{real} \\ $$$${roots},\:{when}\:{the}\:{point}\:{lies}\:{inside}\:{the} \\ $$$${zone}\:{b}^{\mathrm{2}} \geqslant\mathrm{4}{ac},\:{i}.{e}.\:{z}^{\mathrm{2}} \geqslant\mathrm{4}{xy}.\:{that}'{s}\:{the} \\ $$$${hatched}\:{areas}\:{in}\:{the}\:{diagram}. \\ $$$${the}\:{probability}\:{that}\:{the}\:{roots}\:{are} \\ $$$${real}\:{is}\:{then} \\ $$$${p}=\frac{{volume}\:{of}\:{the}\:{zone}\:{z}^{\mathrm{2}} \geqslant\mathrm{4}{xy}}{{volume}\:{of}\:{the}\:{cube}} \\ $$

Commented by mr W last updated on 08/Dec/22

Commented by mr W last updated on 08/Dec/22

4xy≤z^2   y=(z^2 /(4x))  at y=10: x_1 =(z^2 /(40))  A(z)=(z^2 /(40))×10+∫_x_1  ^(10) (z^2 /(4x))dx  A(z)=(z^2 /4)+(z^2 /4)×ln ((400)/z^2 )  V_(zone) =∫_0 ^(10) A(z)dz  V_(zone) =∫_0 ^(10) ((z^2 /4)+(z^2 /4)×ln ((400)/z^2 ))dz  V_(zone) =(1/4)(((10^3 )/3)+∫_0 ^(10) z^2 ×ln ((400)/z^2 )dz)  V_(zone) =((1000)/4)((5/9)+((2 ln 2)/3))=((1000(5+6 ln 2))/(36))  V_(cube) =10^3 =1000  ⇒p=(V_(zone) /V_(cube) )=((5+6 ln 2)/(36))≈25.4%

$$\mathrm{4}{xy}\leqslant{z}^{\mathrm{2}} \\ $$$${y}=\frac{{z}^{\mathrm{2}} }{\mathrm{4}{x}} \\ $$$${at}\:{y}=\mathrm{10}:\:{x}_{\mathrm{1}} =\frac{{z}^{\mathrm{2}} }{\mathrm{40}} \\ $$$${A}\left({z}\right)=\frac{{z}^{\mathrm{2}} }{\mathrm{40}}×\mathrm{10}+\int_{{x}_{\mathrm{1}} } ^{\mathrm{10}} \frac{{z}^{\mathrm{2}} }{\mathrm{4}{x}}{dx} \\ $$$${A}\left({z}\right)=\frac{{z}^{\mathrm{2}} }{\mathrm{4}}+\frac{{z}^{\mathrm{2}} }{\mathrm{4}}×\mathrm{ln}\:\frac{\mathrm{400}}{{z}^{\mathrm{2}} } \\ $$$${V}_{{zone}} =\int_{\mathrm{0}} ^{\mathrm{10}} {A}\left({z}\right){dz} \\ $$$${V}_{{zone}} =\int_{\mathrm{0}} ^{\mathrm{10}} \left(\frac{{z}^{\mathrm{2}} }{\mathrm{4}}+\frac{{z}^{\mathrm{2}} }{\mathrm{4}}×\mathrm{ln}\:\frac{\mathrm{400}}{{z}^{\mathrm{2}} }\right){dz} \\ $$$${V}_{{zone}} =\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{10}^{\mathrm{3}} }{\mathrm{3}}+\int_{\mathrm{0}} ^{\mathrm{10}} {z}^{\mathrm{2}} ×\mathrm{ln}\:\frac{\mathrm{400}}{{z}^{\mathrm{2}} }{dz}\right) \\ $$$${V}_{{zone}} =\frac{\mathrm{1000}}{\mathrm{4}}\left(\frac{\mathrm{5}}{\mathrm{9}}+\frac{\mathrm{2}\:\mathrm{ln}\:\mathrm{2}}{\mathrm{3}}\right)=\frac{\mathrm{1000}\left(\mathrm{5}+\mathrm{6}\:\mathrm{ln}\:\mathrm{2}\right)}{\mathrm{36}} \\ $$$${V}_{{cube}} =\mathrm{10}^{\mathrm{3}} =\mathrm{1000} \\ $$$$\Rightarrow{p}=\frac{{V}_{{zone}} }{{V}_{{cube}} }=\frac{\mathrm{5}+\mathrm{6}\:\mathrm{ln}\:\mathrm{2}}{\mathrm{36}}\approx\mathrm{25}.\mathrm{4\%} \\ $$

Commented by mr W last updated on 09/Dec/22

i hope somebody could comfirm my  method and result, or disprove it.

$${i}\:{hope}\:{somebody}\:{could}\:{comfirm}\:{my} \\ $$$${method}\:{and}\:{result},\:{or}\:{disprove}\:{it}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com