Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 182332 by mnjuly1970 last updated on 07/Dec/22

  If  ,   f (x) = 2cos^( 2) ((x/2)) −⌊ (1/3) +cos(x) ⌋    then find the range of :   R_( f)

$$ \\ $$$$\mathrm{If}\:\:,\:\:\:{f}\:\left({x}\right)\:=\:\mathrm{2}{cos}^{\:\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\:−\lfloor\:\frac{\mathrm{1}}{\mathrm{3}}\:+{cos}\left({x}\right)\:\rfloor \\ $$$$\:\:{then}\:{find}\:{the}\:{range}\:{of}\::\:\:\:{R}_{\:{f}} \\ $$

Answered by floor(10²Eta[1]) last updated on 07/Dec/22

−1≤cosx≤1⇒((−2)/3)≤(1/3)+cosx≤(4/3)  ⇒−1≤⌊(1/3)+cosx⌋≤1⇒−1≤−⌊(1/3)+cosx⌋≤1  0≤2cos^2 ((x/2))≤2  ⇒−1≤f(x)≤3

$$−\mathrm{1}\leqslant\mathrm{cosx}\leqslant\mathrm{1}\Rightarrow\frac{−\mathrm{2}}{\mathrm{3}}\leqslant\frac{\mathrm{1}}{\mathrm{3}}+\mathrm{cosx}\leqslant\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\Rightarrow−\mathrm{1}\leqslant\lfloor\frac{\mathrm{1}}{\mathrm{3}}+\mathrm{cosx}\rfloor\leqslant\mathrm{1}\Rightarrow−\mathrm{1}\leqslant−\lfloor\frac{\mathrm{1}}{\mathrm{3}}+\mathrm{cosx}\rfloor\leqslant\mathrm{1} \\ $$$$\mathrm{0}\leqslant\mathrm{2cos}^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)\leqslant\mathrm{2} \\ $$$$\Rightarrow−\mathrm{1}\leqslant\mathrm{f}\left(\mathrm{x}\right)\leqslant\mathrm{3} \\ $$$$ \\ $$

Answered by mnjuly1970 last updated on 08/Dec/22

   f(x)= 1+cos(x) −⌊ (1/3) + cos(x) ⌋                = (1/3) + cos(x)−⌊(1/3_  ) +cos(x)⌋+(2/3)    ∀ u∈R ,         0≤ u−⌊u⌋ <1   ⇒ f(x)∈ [(2/3) , (5/3) )

$$\:\:\:{f}\left({x}\right)=\:\mathrm{1}+{cos}\left({x}\right)\:−\lfloor\:\frac{\mathrm{1}}{\mathrm{3}}\:+\:{cos}\left({x}\right)\:\rfloor \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:+\:{cos}\left({x}\right)−\lfloor\frac{\mathrm{1}}{\mathrm{3}_{\:} }\:+{cos}\left({x}\right)\rfloor+\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\:\:\forall\:{u}\in\mathbb{R}\:,\:\:\:\:\:\:\:\:\:\mathrm{0}\leqslant\:{u}−\lfloor{u}\rfloor\:<\mathrm{1}\:\:\:\Rightarrow\:{f}\left({x}\right)\in\:\left[\frac{\mathrm{2}}{\mathrm{3}}\:,\:\frac{\mathrm{5}}{\mathrm{3}}\:\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com