Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 182311 by mnjuly1970 last updated on 07/Dec/22

Commented by Frix last updated on 07/Dec/22

Another question:  At which angle α the areas of the triangles  ABY and BCY are equal?

$$\mathrm{Another}\:\mathrm{question}: \\ $$$$\mathrm{At}\:\mathrm{which}\:\mathrm{angle}\:\alpha\:\mathrm{the}\:\mathrm{areas}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangles} \\ $$$${ABY}\:\mathrm{and}\:{BCY}\:\mathrm{are}\:\mathrm{equal}? \\ $$

Commented by Frix last updated on 07/Dec/22

...and at which angle α the areas of the  triangles ABX and ABY are equal?  And ABX and BCY?

$$...\mathrm{and}\:\mathrm{at}\:\mathrm{which}\:\mathrm{angle}\:\alpha\:\mathrm{the}\:\mathrm{areas}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{triangles}\:{ABX}\:\mathrm{and}\:{ABY}\:\mathrm{are}\:\mathrm{equal}? \\ $$$$\mathrm{And}\:{ABX}\:\mathrm{and}\:{BCY}? \\ $$

Commented by MJS_new last updated on 09/Dec/22

AB=a     AC=b     a≤b     BC=(√(a^2 +b^2 ))  AX=h     BX=p     CX=q  ⇒  Δ_1 =area (aph) =((a^3 b)/(2(a^2 +b^2 )))  Δ_2 =area (bqh) =((ab^3 )/(2(a^2 +b^2 )))  Δ_3 =area (ABY) =(a^4 /(a^2 +b^2 ))  Δ_4 =area (BCY) =(((b^3 +a^2 b−2a^3 )a)/(2(a^2 +b^2 )))  we can set b=1 ⇒ 0<a≤b  Δ_1 =Δ_2  ⇒ a=1  Δ_1 =Δ_3  ⇒ a=1/2  Δ_1 =Δ_4  ⇒ a=1/(2)^(1/3)   Δ_2 =Δ_3  ⇒ a=1/(2)^(1/3)   Δ_2 =Δ_4  ⇒ a=1/2  Δ_3 =Δ_4  ⇒ a≈.725270085072 [a=(1/(12))(1+((217−12(√(327))))^(1/3) +((217+12(√(327))))^(1/3) )]  calculate the angles, I′m too lazy.

$${AB}={a}\:\:\:\:\:{AC}={b}\:\:\:\:\:{a}\leqslant{b}\:\:\:\:\:{BC}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${AX}={h}\:\:\:\:\:{BX}={p}\:\:\:\:\:{CX}={q} \\ $$$$\Rightarrow \\ $$$$\Delta_{\mathrm{1}} =\mathrm{area}\:\left({aph}\right)\:=\frac{{a}^{\mathrm{3}} {b}}{\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)} \\ $$$$\Delta_{\mathrm{2}} =\mathrm{area}\:\left({bqh}\right)\:=\frac{{ab}^{\mathrm{3}} }{\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)} \\ $$$$\Delta_{\mathrm{3}} =\mathrm{area}\:\left({ABY}\right)\:=\frac{{a}^{\mathrm{4}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\Delta_{\mathrm{4}} =\mathrm{area}\:\left({BCY}\right)\:=\frac{\left({b}^{\mathrm{3}} +{a}^{\mathrm{2}} {b}−\mathrm{2}{a}^{\mathrm{3}} \right){a}}{\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{set}\:{b}=\mathrm{1}\:\Rightarrow\:\mathrm{0}<{a}\leqslant{b} \\ $$$$\Delta_{\mathrm{1}} =\Delta_{\mathrm{2}} \:\Rightarrow\:{a}=\mathrm{1} \\ $$$$\Delta_{\mathrm{1}} =\Delta_{\mathrm{3}} \:\Rightarrow\:{a}=\mathrm{1}/\mathrm{2} \\ $$$$\Delta_{\mathrm{1}} =\Delta_{\mathrm{4}} \:\Rightarrow\:{a}=\mathrm{1}/\sqrt[{\mathrm{3}}]{\mathrm{2}} \\ $$$$\Delta_{\mathrm{2}} =\Delta_{\mathrm{3}} \:\Rightarrow\:{a}=\mathrm{1}/\sqrt[{\mathrm{3}}]{\mathrm{2}} \\ $$$$\Delta_{\mathrm{2}} =\Delta_{\mathrm{4}} \:\Rightarrow\:{a}=\mathrm{1}/\mathrm{2} \\ $$$$\Delta_{\mathrm{3}} =\Delta_{\mathrm{4}} \:\Rightarrow\:{a}\approx.\mathrm{725270085072}\:\left[{a}=\frac{\mathrm{1}}{\mathrm{12}}\left(\mathrm{1}+\sqrt[{\mathrm{3}}]{\mathrm{217}−\mathrm{12}\sqrt{\mathrm{327}}}+\sqrt[{\mathrm{3}}]{\mathrm{217}+\mathrm{12}\sqrt{\mathrm{327}}}\right)\right] \\ $$$$\mathrm{calculate}\:\mathrm{the}\:\mathrm{angles},\:\mathrm{I}'\mathrm{m}\:\mathrm{too}\:\mathrm{lazy}. \\ $$

Commented by Frix last updated on 09/Dec/22

Thank you...

$$\mathrm{Thank}\:\mathrm{you}... \\ $$

Commented by Acem last updated on 10/Dec/22

Why losing calories by writing calculate the...etc   Next time just write “...” and the calculators   will complete the job.  Thanks Sir!

$${Why}\:{losing}\:{calories}\:{by}\:{writing}\:{calculate}\:{the}...{etc} \\ $$$$\:{Next}\:{time}\:{just}\:{write}\:``...''\:{and}\:{the}\:{calculators} \\ $$$$\:{will}\:{complete}\:{the}\:{job}. \\ $$$${Thanks}\:{Sir}! \\ $$

Answered by Acem last updated on 08/Dec/22

 (2/h_(AX) ) − (2/λ_(BY) )= (1/b_(AC) ) ⇔ (2/(c cos α)) − ((2 cos α)/c) = ((tan α)/c) ⇔    2 sin^2  α= sin α , α= 30°    @Mr Frix   Total △ABC= (1/2) bc , △ABY = (1/2) x_(AY)  c   For △ABY= △BCY = (1/2) △ABC  at x= (b/2)   that mean BY is median ; β_(∡ACB) =30, α ∈ [0, 60]   but how to determin α if we have not any side?   if you used (1/2) λ_(BY)   c sin α, well   the area will be= (1/2) c^2  tan α ,   so how to determine α

$$\:\frac{\mathrm{2}}{{h}_{{AX}} }\:−\:\frac{\mathrm{2}}{\lambda_{{BY}} }=\:\frac{\mathrm{1}}{{b}_{{AC}} }\:\Leftrightarrow\:\frac{\mathrm{2}}{{c}\:\mathrm{cos}\:\alpha}\:−\:\frac{\mathrm{2}\:\mathrm{cos}\:\alpha}{{c}}\:=\:\frac{\mathrm{tan}\:\alpha}{{c}}\:\Leftrightarrow \\ $$$$\:\:\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\alpha=\:\mathrm{sin}\:\alpha\:,\:\alpha=\:\mathrm{30}° \\ $$$$ \\ $$$$@{Mr}\:{Frix} \\ $$$$\:{Total}\:\bigtriangleup{ABC}=\:\frac{\mathrm{1}}{\mathrm{2}}\:{bc}\:,\:\bigtriangleup{ABY}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:{x}_{{AY}} \:{c} \\ $$$$\:{For}\:\bigtriangleup{ABY}=\:\bigtriangleup{BCY}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\bigtriangleup{ABC}\:\:{at}\:{x}=\:\frac{{b}}{\mathrm{2}} \\ $$$$\:{that}\:{mean}\:{BY}\:{is}\:{median}\:;\:\beta_{\measuredangle{ACB}} =\mathrm{30},\:\alpha\:\in\:\left[\mathrm{0},\:\mathrm{60}\right] \\ $$$$\:{but}\:{how}\:{to}\:{determin}\:\alpha\:{if}\:{we}\:{have}\:{not}\:{any}\:{side}? \\ $$$$\:{if}\:{you}\:{used}\:\frac{\mathrm{1}}{\mathrm{2}}\:\lambda_{{BY}} \:\:{c}\:\mathrm{sin}\:\alpha,\:{well} \\ $$$$\:{the}\:{area}\:{will}\:{be}=\:\frac{\mathrm{1}}{\mathrm{2}}\:{c}^{\mathrm{2}} \:\mathrm{tan}\:\alpha\:, \\ $$$$\:{so}\:{how}\:{to}\:{determine}\:\alpha \\ $$$$\: \\ $$

Commented by mnjuly1970 last updated on 08/Dec/22

thx sir Acm

$${thx}\:{sir}\:{Acm} \\ $$

Commented by Acem last updated on 08/Dec/22

You′re very much welcone, and thank you a lot   for your featured qusetions!

$${You}'{re}\:{very}\:{much}\:{welcone},\:{and}\:{thank}\:{you}\:{a}\:{lot} \\ $$$$\:{for}\:{your}\:{featured}\:{qusetions}! \\ $$

Answered by mr W last updated on 07/Dec/22

say AB=1  AX=cos α  AY=(1/(cos α))  AC=(1/(tan α))  (2/(cos α))−2 cos α=tan α  2 sin^2  α=sin α  sin α=(1/2)  ⇒α=30°

$${say}\:{AB}=\mathrm{1} \\ $$$${AX}=\mathrm{cos}\:\alpha \\ $$$${AY}=\frac{\mathrm{1}}{\mathrm{cos}\:\alpha} \\ $$$${AC}=\frac{\mathrm{1}}{\mathrm{tan}\:\alpha} \\ $$$$\frac{\mathrm{2}}{\mathrm{cos}\:\alpha}−\mathrm{2}\:\mathrm{cos}\:\alpha=\mathrm{tan}\:\alpha \\ $$$$\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\alpha=\mathrm{sin}\:\alpha \\ $$$$\mathrm{sin}\:\alpha=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\alpha=\mathrm{30}° \\ $$

Commented by mnjuly1970 last updated on 07/Dec/22

tayeballah(grateful)sir W

$${tayeballah}\left({grateful}\right){sir}\:{W} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com