Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 182199 by depressiveshrek last updated on 05/Dec/22

Let S={1, 2, 3, 4, 5, 6, 7}  If we multiply atleast 2 numbers  from this set with each other, what  are the chances of the product to  turn out to be divisible by 3?

$${Let}\:{S}=\left\{\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4},\:\mathrm{5},\:\mathrm{6},\:\mathrm{7}\right\} \\ $$$${If}\:{we}\:{multiply}\:{atleast}\:\mathrm{2}\:{numbers} \\ $$$${from}\:{this}\:{set}\:{with}\:{each}\:{other},\:{what} \\ $$$${are}\:{the}\:{chances}\:{of}\:{the}\:{product}\:{to} \\ $$$${turn}\:{out}\:{to}\:{be}\:{divisible}\:{by}\:\mathrm{3}? \\ $$

Answered by Acem last updated on 06/Dec/22

 This solution is for product only 2 numbers   I will solve the question later   P(product_(div. by 3) )= ((11)/(21))    a×b, b×a ≡ one way,   a×a is refused according  to the question     The method:   S_1 = {1, 2, 4, 5, 7}    ,  S_2 = {3, 6}      P(product_(div. by 3) )= ((C_1 ^( 5)  C_( 1) ^( 2)  + C_( 2) ^( 2) _(S_2 ) )/((n(n−1))/2))          ; n= 7

$$\:{This}\:{solution}\:{is}\:{for}\:{product}\:{only}\:\mathrm{2}\:{numbers} \\ $$$$\:{I}\:{will}\:{solve}\:{the}\:{question}\:{later} \\ $$$$\:{P}\left({product}_{{div}.\:{by}\:\mathrm{3}} \right)=\:\frac{\mathrm{11}}{\mathrm{21}}\: \\ $$$$\:{a}×{b},\:{b}×{a}\:\equiv\:{one}\:{way}, \\ $$$$\:{a}×{a}\:{is}\:{refused}\:{according}\:\:{to}\:{the}\:{question} \\ $$$$ \\ $$$$\:{The}\:{method}: \\ $$$$\:{S}_{\mathrm{1}} =\:\left\{\mathrm{1},\:\mathrm{2},\:\mathrm{4},\:\mathrm{5},\:\mathrm{7}\right\}\:\:\:\:,\:\:{S}_{\mathrm{2}} =\:\left\{\mathrm{3},\:\mathrm{6}\right\} \\ $$$$ \\ $$$$\:\:{P}\left({product}_{{div}.\:{by}\:\mathrm{3}} \right)=\:\frac{{C}_{\mathrm{1}} ^{\:\mathrm{5}} \:{C}_{\:\mathrm{1}} ^{\:\mathrm{2}} \:+\:\underset{{S}_{\mathrm{2}} } {\underbrace{{C}_{\:\mathrm{2}} ^{\:\mathrm{2}} }}}{\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}}\:\:\:\:\:\:\:\:\:\:;\:{n}=\:\mathrm{7} \\ $$

Commented by mr W last updated on 06/Dec/22

the question is “take at least two   numbers”, not “take only two   numbers” as you assumed.

$${the}\:{question}\:{is}\:``{take}\:{at}\:{least}\:{two}\: \\ $$$${numbers}'',\:{not}\:``{take}\:{only}\:{two}\: \\ $$$${numbers}''\:{as}\:{you}\:{assumed}. \\ $$

Commented by Acem last updated on 06/Dec/22

Yes, i didn′t notice that well, thank you Sir   for the correction

$${Yes},\:{i}\:{didn}'{t}\:{notice}\:{that}\:{well},\:{thank}\:{you}\:{Sir} \\ $$$$\:{for}\:{the}\:{correction} \\ $$

Answered by mr W last updated on 06/Dec/22

1) take 7 numbers  total: 1 way  divisible by 3: 1 way    2) take 6 numbers  total: 7 ways  divisible by 3: 7 ways    3) take 5 numbers  total: C_5 ^7 =21 ways  divisible by 3: 1×C_3 ^5 +2×C_4 ^5 =20    4) take 4 numbers  total: C_4 ^7 =35 ways  divisible by 3: 1×C_2 ^5 +2×C_3 ^5 =30    5) take 3 numbers  total: C_3 ^7 =35 ways  divisible by 3: 1×C_1 ^5 +2×C_2 ^5 =25    6) take 2 numbers  total: C_2 ^7 =21 ways  divisible by 3: 1+2×C_1 ^5 =11    take at least 2 numbers:  total: 1+7+21+35+35+21=120 ways  divisible by 3: 1+7+20+30+25+11=94 ways  p=((94)/(120))≈78.3%

$$\left.\mathrm{1}\right)\:{take}\:\mathrm{7}\:{numbers} \\ $$$${total}:\:\mathrm{1}\:{way} \\ $$$${divisible}\:{by}\:\mathrm{3}:\:\mathrm{1}\:{way} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:{take}\:\mathrm{6}\:{numbers} \\ $$$${total}:\:\mathrm{7}\:{ways} \\ $$$${divisible}\:{by}\:\mathrm{3}:\:\mathrm{7}\:{ways} \\ $$$$ \\ $$$$\left.\mathrm{3}\right)\:{take}\:\mathrm{5}\:{numbers} \\ $$$${total}:\:{C}_{\mathrm{5}} ^{\mathrm{7}} =\mathrm{21}\:{ways} \\ $$$${divisible}\:{by}\:\mathrm{3}:\:\mathrm{1}×{C}_{\mathrm{3}} ^{\mathrm{5}} +\mathrm{2}×{C}_{\mathrm{4}} ^{\mathrm{5}} =\mathrm{20} \\ $$$$ \\ $$$$\left.\mathrm{4}\right)\:{take}\:\mathrm{4}\:{numbers} \\ $$$${total}:\:{C}_{\mathrm{4}} ^{\mathrm{7}} =\mathrm{35}\:{ways} \\ $$$${divisible}\:{by}\:\mathrm{3}:\:\mathrm{1}×{C}_{\mathrm{2}} ^{\mathrm{5}} +\mathrm{2}×{C}_{\mathrm{3}} ^{\mathrm{5}} =\mathrm{30} \\ $$$$ \\ $$$$\left.\mathrm{5}\right)\:{take}\:\mathrm{3}\:{numbers} \\ $$$${total}:\:{C}_{\mathrm{3}} ^{\mathrm{7}} =\mathrm{35}\:{ways} \\ $$$${divisible}\:{by}\:\mathrm{3}:\:\mathrm{1}×{C}_{\mathrm{1}} ^{\mathrm{5}} +\mathrm{2}×{C}_{\mathrm{2}} ^{\mathrm{5}} =\mathrm{25} \\ $$$$ \\ $$$$\left.\mathrm{6}\right)\:{take}\:\mathrm{2}\:{numbers} \\ $$$${total}:\:{C}_{\mathrm{2}} ^{\mathrm{7}} =\mathrm{21}\:{ways} \\ $$$${divisible}\:{by}\:\mathrm{3}:\:\mathrm{1}+\mathrm{2}×{C}_{\mathrm{1}} ^{\mathrm{5}} =\mathrm{11} \\ $$$$ \\ $$$$\boldsymbol{{take}}\:\boldsymbol{{at}}\:\boldsymbol{{least}}\:\mathrm{2}\:\boldsymbol{{numbers}}: \\ $$$${total}:\:\mathrm{1}+\mathrm{7}+\mathrm{21}+\mathrm{35}+\mathrm{35}+\mathrm{21}=\mathrm{120}\:{ways} \\ $$$${divisible}\:{by}\:\mathrm{3}:\:\mathrm{1}+\mathrm{7}+\mathrm{20}+\mathrm{30}+\mathrm{25}+\mathrm{11}=\mathrm{94}\:{ways} \\ $$$${p}=\frac{\mathrm{94}}{\mathrm{120}}\approx\mathrm{78}.\mathrm{3\%} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com