Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 181602 by ali009 last updated on 27/Nov/22

if   lim_(x→1) (((√(ax+b))−4)/((x−1)))=5    find a,b

$${if}\: \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {{lim}}\frac{\sqrt{{ax}+{b}}−\mathrm{4}}{\left({x}−\mathrm{1}\right)}=\mathrm{5}\:\:\:\:{find}\:{a},{b} \\ $$

Answered by aleks041103 last updated on 27/Nov/22

as the denominator goes to 0, to have  a finite limit, we need (√(ax+b))−4→0  ⇒a+b=16  now, lhopital  lim(((√(ax+b))−4)/(x−1))=lim((a/(2(√(ax+b))))/1)=(a/(2(√(16))))=(a/8)=5  ⇒a=40  ⇒b=16−40=−24  ⇒(a,b)=(40,−24)

$${as}\:{the}\:{denominator}\:{goes}\:{to}\:\mathrm{0},\:{to}\:{have} \\ $$$${a}\:{finite}\:{limit},\:{we}\:{need}\:\sqrt{{ax}+{b}}−\mathrm{4}\rightarrow\mathrm{0} \\ $$$$\Rightarrow{a}+{b}=\mathrm{16} \\ $$$${now},\:{lhopital} \\ $$$${lim}\frac{\sqrt{{ax}+{b}}−\mathrm{4}}{{x}−\mathrm{1}}={lim}\frac{\frac{{a}}{\mathrm{2}\sqrt{{ax}+{b}}}}{\mathrm{1}}=\frac{{a}}{\mathrm{2}\sqrt{\mathrm{16}}}=\frac{{a}}{\mathrm{8}}=\mathrm{5} \\ $$$$\Rightarrow{a}=\mathrm{40} \\ $$$$\Rightarrow{b}=\mathrm{16}−\mathrm{40}=−\mathrm{24} \\ $$$$\Rightarrow\left({a},{b}\right)=\left(\mathrm{40},−\mathrm{24}\right) \\ $$

Answered by cortano1 last updated on 27/Nov/22

 (i) lim_(x→1)  (√(ax+b))−4 = 0    ⇒a+b = 16 ⇒b=16−a   (ii) lim_(x→1)  (((√(ax+16−a))−4)/(x−1)) = 5  ⇒ lim_(x→1)  ((ax+16−a−16)/((x−1)((√(ax+16−a))+4))) =5  ⇒ lim_(x→1)  ((a(x−1))/((x−1) (8))) = 5  ⇒ { ((a=40)),((b=−24)) :}

$$\:\left(\mathrm{i}\right)\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\sqrt{\mathrm{ax}+\mathrm{b}}−\mathrm{4}\:=\:\mathrm{0} \\ $$$$\:\:\Rightarrow\mathrm{a}+\mathrm{b}\:=\:\mathrm{16}\:\Rightarrow\mathrm{b}=\mathrm{16}−\mathrm{a} \\ $$$$\:\left(\mathrm{ii}\right)\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{ax}+\mathrm{16}−\mathrm{a}}−\mathrm{4}}{\mathrm{x}−\mathrm{1}}\:=\:\mathrm{5} \\ $$$$\Rightarrow\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{ax}+\mathrm{16}−\mathrm{a}−\mathrm{16}}{\left(\mathrm{x}−\mathrm{1}\right)\left(\sqrt{\mathrm{ax}+\mathrm{16}−\mathrm{a}}+\mathrm{4}\right)}\:=\mathrm{5} \\ $$$$\Rightarrow\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{a}\left(\mathrm{x}−\mathrm{1}\right)}{\left(\mathrm{x}−\mathrm{1}\right)\:\left(\mathrm{8}\right)}\:=\:\mathrm{5} \\ $$$$\Rightarrow\begin{cases}{\mathrm{a}=\mathrm{40}}\\{\mathrm{b}=−\mathrm{24}}\end{cases} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com