Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 180828 by Vynho last updated on 17/Nov/22

H_n =1+(1/2)+(1/3)+...+(1/n)  H_(2n) =? compute H_(2n) −H_n  and H_(n+1) −H_n

$${H}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+...+\frac{\mathrm{1}}{{n}} \\ $$$${H}_{\mathrm{2}{n}} =?\:{compute}\:{H}_{\mathrm{2}{n}} −{H}_{{n}} \:{and}\:{H}_{{n}+\mathrm{1}} −{H}_{{n}} \\ $$

Commented by Frix last updated on 17/Nov/22

obviously H_(n+1) −H_n =(1/(n+1))  I believe that lim_(n→∞)  (H_(kn) −H_n ) =ln k for k∈N

$$\mathrm{obviously}\:{H}_{{n}+\mathrm{1}} −{H}_{{n}} =\frac{\mathrm{1}}{{n}+\mathrm{1}} \\ $$$$\mathrm{I}\:\mathrm{believe}\:\mathrm{that}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left({H}_{{kn}} −{H}_{{n}} \right)\:=\mathrm{ln}\:{k}\:\mathrm{for}\:{k}\in\mathbb{N} \\ $$

Answered by Frix last updated on 19/Nov/22

H_(2n) −H_n =Σ_(k=1) ^(2n) (1/k)−Σ_(k=1) ^n (1/k)=  =(1/1)+(1/2)+(1/3)+(1/4)+...+(1/(2n))−Σ_(k=1) ^n (1/k)=  =(1/1)+(1/3)+...+(1/(2n−1))+(1/2)+(1/4)+...+(1/(2n))−Σ_(k=1) ^n (1/k)=  =Σ_(k=1) ^n (1/(2k−1))+Σ_(k=1) ^n (1/(2k))−Σ_(k=1) ^n (1/k)=  =Σ_(k=1) ^n (1/(2k−1))+(1/2)Σ_(k=1) ^n (1/k)−Σ_(k=1) ^n (1/k)=  =Σ_(k=1) ^n (1/(2k−1))−(1/2)Σ_(k=1) ^n (1/k)=Σ_(k=1) ^n (1/(2k−1))−(H_n /2)  ⇒  H_(2n) =(H_n /2)+Σ_(k=1) ^n (1/(2k−1))

$${H}_{\mathrm{2}{n}} −{H}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}{n}} {\sum}}\frac{\mathrm{1}}{{k}}−\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+...+\frac{\mathrm{1}}{\mathrm{2}{n}}−\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{3}}+...+\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+...+\frac{\mathrm{1}}{\mathrm{2}{n}}−\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}}= \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}+\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{k}}−\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}}= \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}}−\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}}= \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}}−\frac{{H}_{{n}} }{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$${H}_{\mathrm{2}{n}} =\frac{{H}_{{n}} }{\mathrm{2}}+\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}{k}−\mathrm{1}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com