Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 180446 by Mastermind last updated on 12/Nov/22

Solve :   x_1  + 2x_2  − 3x_3  = 0  2x_1  + 4x_2  − 2x_3  = 2  3x_1  + 6x_2  − 4x_3  = 3

$$\mathrm{Solve}\::\: \\ $$$$\mathrm{x}_{\mathrm{1}} \:+\:\mathrm{2x}_{\mathrm{2}} \:−\:\mathrm{3x}_{\mathrm{3}} \:=\:\mathrm{0} \\ $$$$\mathrm{2x}_{\mathrm{1}} \:+\:\mathrm{4x}_{\mathrm{2}} \:−\:\mathrm{2x}_{\mathrm{3}} \:=\:\mathrm{2} \\ $$$$\mathrm{3x}_{\mathrm{1}} \:+\:\mathrm{6x}_{\mathrm{2}} \:−\:\mathrm{4x}_{\mathrm{3}} \:=\:\mathrm{3} \\ $$

Answered by liuxinnan last updated on 12/Nov/22

$$ \\ $$

Commented by liuxinnan last updated on 12/Nov/22

Answered by mr W last updated on 12/Nov/22

from eqn. (i) we get:  2x_1 +4x_2 =6x_3      ...(iv)  from (ii) and (iv):  6x_3 =2+2x_3   ⇒x_3 =(1/2)  from eqn. (i) we get:  3x_1 +6x_2 =9x_3      ...(v)  from (iii) and (v):  9x_3 =3+4x_3   ⇒x_3 =(3/5)  this is contradiction to x_3 =(1/2).  that means the eqn. system has no  solution.

$${from}\:{eqn}.\:\left({i}\right)\:{we}\:{get}: \\ $$$$\mathrm{2}{x}_{\mathrm{1}} +\mathrm{4}{x}_{\mathrm{2}} =\mathrm{6}{x}_{\mathrm{3}} \:\:\:\:\:...\left({iv}\right) \\ $$$${from}\:\left({ii}\right)\:{and}\:\left({iv}\right): \\ $$$$\mathrm{6}{x}_{\mathrm{3}} =\mathrm{2}+\mathrm{2}{x}_{\mathrm{3}} \\ $$$$\Rightarrow{x}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${from}\:{eqn}.\:\left({i}\right)\:{we}\:{get}: \\ $$$$\mathrm{3}{x}_{\mathrm{1}} +\mathrm{6}{x}_{\mathrm{2}} =\mathrm{9}{x}_{\mathrm{3}} \:\:\:\:\:...\left({v}\right) \\ $$$${from}\:\left({iii}\right)\:{and}\:\left({v}\right): \\ $$$$\mathrm{9}{x}_{\mathrm{3}} =\mathrm{3}+\mathrm{4}{x}_{\mathrm{3}} \\ $$$$\Rightarrow{x}_{\mathrm{3}} =\frac{\mathrm{3}}{\mathrm{5}} \\ $$$${this}\:{is}\:{contradiction}\:{to}\:{x}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}. \\ $$$${that}\:{means}\:{the}\:{eqn}.\:{system}\:{has}\:{no} \\ $$$${solution}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com