Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 178867 by Spillover last updated on 22/Oct/22

Answered by Spillover last updated on 15/Jan/23

f(x)=x^4 −7x^3 +1  requare to show  f(x_o )×f(x_1 )<0  given  0<x<1  f(x)=x^4 −7x^3 +1  f(0)=1   f(1)=−5  f(x_o )×f(x_1 )<0  1×−5<0  hence the root lies btn 0<x<1

$${f}\left({x}\right)={x}^{\mathrm{4}} −\mathrm{7}{x}^{\mathrm{3}} +\mathrm{1} \\ $$$${requare}\:{to}\:{show} \\ $$$${f}\left({x}_{{o}} \right)×{f}\left({x}_{\mathrm{1}} \right)<\mathrm{0} \\ $$$${given}\:\:\mathrm{0}<{x}<\mathrm{1} \\ $$$${f}\left({x}\right)={x}^{\mathrm{4}} −\mathrm{7}{x}^{\mathrm{3}} +\mathrm{1} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{1}\:\:\:{f}\left(\mathrm{1}\right)=−\mathrm{5} \\ $$$${f}\left({x}_{{o}} \right)×{f}\left({x}_{\mathrm{1}} \right)<\mathrm{0} \\ $$$$\mathrm{1}×−\mathrm{5}<\mathrm{0} \\ $$$${hence}\:{the}\:{root}\:{lies}\:{btn}\:\mathrm{0}<{x}<\mathrm{1} \\ $$$$ \\ $$

Answered by Spillover last updated on 15/Jan/23

f(x)=x^4 −7x^4 +1  f ′(x)=4x^3 −21  from N−R method  x_(n+1) =x_n −((f(x))/(f ′(x)))  x_(n+1) =x_n −((x_n ^4 −7x_n ^3 +1)/(4x_n ^3 −21x_n ^2 ))  x_(n+1) =((x_n ^4 −14x_n ^3 −1)/(4x_n ^3 −21x_n ^2 ))  x_0 =1  1^(st ) Iteration n=0  x_1 =((x_0 ^4 −14x_0 ^3 −1)/(4x_0 ^3 −21x_0 ^2 )) =0.705882352  2^(nd)   Iteration n=1     x_2 =0.571865018  3^(st ) Iteration n=2           x_3 =0.538828437  4^(st ) Iteration n=3       x_4 =0.536855534

$${f}\left({x}\right)={x}^{\mathrm{4}} −\mathrm{7}{x}^{\mathrm{4}} +\mathrm{1} \\ $$$${f}\:'\left({x}\right)=\mathrm{4}{x}^{\mathrm{3}} −\mathrm{21} \\ $$$${from}\:{N}−{R}\:{method} \\ $$$${x}_{{n}+\mathrm{1}} ={x}_{{n}} −\frac{{f}\left({x}\right)}{{f}\:'\left({x}\right)} \\ $$$${x}_{{n}+\mathrm{1}} ={x}_{{n}} −\frac{{x}_{{n}} ^{\mathrm{4}} −\mathrm{7}{x}_{{n}} ^{\mathrm{3}} +\mathrm{1}}{\mathrm{4}{x}_{{n}} ^{\mathrm{3}} −\mathrm{21}{x}_{{n}} ^{\mathrm{2}} } \\ $$$${x}_{{n}+\mathrm{1}} =\frac{{x}_{{n}} ^{\mathrm{4}} −\mathrm{14}{x}_{{n}} ^{\mathrm{3}} −\mathrm{1}}{\mathrm{4}{x}_{{n}} ^{\mathrm{3}} −\mathrm{21}{x}_{{n}} ^{\mathrm{2}} } \\ $$$${x}_{\mathrm{0}} =\mathrm{1} \\ $$$$\mathrm{1}^{{st}\:} {Iteration}\:{n}=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =\frac{{x}_{\mathrm{0}} ^{\mathrm{4}} −\mathrm{14}{x}_{\mathrm{0}} ^{\mathrm{3}} −\mathrm{1}}{\mathrm{4}{x}_{\mathrm{0}} ^{\mathrm{3}} −\mathrm{21}{x}_{\mathrm{0}} ^{\mathrm{2}} }\:=\mathrm{0}.\mathrm{705882352} \\ $$$$\mathrm{2}^{{nd}} \:\:{Iteration}\:{n}=\mathrm{1}\:\:\:\:\:{x}_{\mathrm{2}} =\mathrm{0}.\mathrm{571865018} \\ $$$$\mathrm{3}^{{st}\:} {Iteration}\:{n}=\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:{x}_{\mathrm{3}} =\mathrm{0}.\mathrm{538828437} \\ $$$$\mathrm{4}^{{st}\:} {Iteration}\:{n}=\mathrm{3}\:\:\:\:\:\:\:{x}_{\mathrm{4}} =\mathrm{0}.\mathrm{536855534} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com