Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 178686 by greougoury555 last updated on 20/Oct/22

 Given 2x^2 y^2 +12y^2 =7x^2 +647    for x,y ε Z .   Find the remaider if 3x^2 y^4  divide by    11 .

$$\:{Given}\:\mathrm{2}{x}^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{12}{y}^{\mathrm{2}} =\mathrm{7}{x}^{\mathrm{2}} +\mathrm{647}\: \\ $$$$\:{for}\:{x},{y}\:\varepsilon\:\mathbb{Z}\:. \\ $$$$\:{Find}\:{the}\:{remaider}\:{if}\:\mathrm{3}{x}^{\mathrm{2}} {y}^{\mathrm{4}} \:{divide}\:{by} \\ $$$$\:\:\mathrm{11}\:. \\ $$

Answered by Rasheed.Sindhi last updated on 20/Oct/22

2x^2 y^2 +12y^2 =7x^2 +647  2y^2 (x^2 +6)=7(x^2 +6)+605  2y^2 (x^2 +6)−7(x^2 +6)=605  (x^2 +6)(2y^2 −7)=5×11^2 ......A  Possible values for x^2 +6:  1,5,11,121,55,605,−1,−5,−11,−121,−55,−605  Possible values for x^2   −5^(×) ,−1^(×) ,5^(×) ,115^(×) ,   determinant (((49)))^✓ ,599^(×) ,−7^(×) ,−11^(×) ,−17^(×) ,−127^(×) ,−61^(×) ,−611^(×)   ∵ x∈Z    ∴   x^2 =49⇒x=±7  If x^2 +6=(±7)^2 +6=55 then from A  2y^2 −7=605/55=11  2y^2 =18⇒y=±3     (x,y)=(±7,±3) or (±7,∓3)      3x^2 y^4 =3(±7)^2 (±3)^4 =3(±7)^2 (∓3)^4 =11907      11907 (mod 11)= determinant ((5))

$$\mathrm{2}{x}^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{12}{y}^{\mathrm{2}} =\mathrm{7}{x}^{\mathrm{2}} +\mathrm{647} \\ $$$$\mathrm{2}{y}^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{6}\right)=\mathrm{7}\left({x}^{\mathrm{2}} +\mathrm{6}\right)+\mathrm{605} \\ $$$$\mathrm{2}{y}^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{6}\right)−\mathrm{7}\left({x}^{\mathrm{2}} +\mathrm{6}\right)=\mathrm{605} \\ $$$$\left({x}^{\mathrm{2}} +\mathrm{6}\right)\left(\mathrm{2}{y}^{\mathrm{2}} −\mathrm{7}\right)=\mathrm{5}×\mathrm{11}^{\mathrm{2}} ......{A} \\ $$$${Possible}\:{values}\:{for}\:{x}^{\mathrm{2}} +\mathrm{6}: \\ $$$$\mathrm{1},\mathrm{5},\mathrm{11},\mathrm{121},\mathrm{55},\mathrm{605},−\mathrm{1},−\mathrm{5},−\mathrm{11},−\mathrm{121},−\mathrm{55},−\mathrm{605} \\ $$$${Possible}\:{values}\:{for}\:{x}^{\mathrm{2}} \\ $$$$\overset{×} {−\mathrm{5}},\overset{×} {−\mathrm{1}},\overset{×} {\mathrm{5}},\overset{×} {\mathrm{115}},\:\:\begin{array}{|c|}{\mathrm{49}}\\\hline\end{array}^{\checkmark} ,\overset{×} {\mathrm{599}},\overset{×} {−\mathrm{7}},\overset{×} {−\mathrm{11}},\overset{×} {−\mathrm{17}},\overset{×} {−\mathrm{127}},\overset{×} {−\mathrm{61}},\overset{×} {−\mathrm{611}} \\ $$$$\because\:{x}\in\mathbb{Z}\:\:\:\:\therefore\:\:\:{x}^{\mathrm{2}} =\mathrm{49}\Rightarrow{x}=\pm\mathrm{7} \\ $$$${If}\:{x}^{\mathrm{2}} +\mathrm{6}=\left(\pm\mathrm{7}\right)^{\mathrm{2}} +\mathrm{6}=\mathrm{55}\:{then}\:{from}\:{A} \\ $$$$\mathrm{2}{y}^{\mathrm{2}} −\mathrm{7}=\mathrm{605}/\mathrm{55}=\mathrm{11} \\ $$$$\mathrm{2}{y}^{\mathrm{2}} =\mathrm{18}\Rightarrow{y}=\pm\mathrm{3} \\ $$$$\: \\ $$$$\left({x},{y}\right)=\left(\pm\mathrm{7},\pm\mathrm{3}\right)\:{or}\:\left(\pm\mathrm{7},\mp\mathrm{3}\right) \\ $$$$\:\:\:\:\mathrm{3}{x}^{\mathrm{2}} {y}^{\mathrm{4}} =\mathrm{3}\left(\pm\mathrm{7}\right)^{\mathrm{2}} \left(\pm\mathrm{3}\right)^{\mathrm{4}} =\mathrm{3}\left(\pm\mathrm{7}\right)^{\mathrm{2}} \left(\mp\mathrm{3}\right)^{\mathrm{4}} =\mathrm{11907} \\ $$$$\:\:\:\:\mathrm{11907}\:\left({mod}\:\mathrm{11}\right)=\begin{array}{|c|}{\mathrm{5}}\\\hline\end{array} \\ $$

Commented by cortano1 last updated on 21/Oct/22

 typo ⇒2y^2 =18 ; y=± 3  (x,y)= (±7 ,±3)  then 3x^2 y^4 =3×49×81=11907   11907 = 1082×11+5=5(mod 11)

$$\:\mathrm{typo}\:\Rightarrow\mathrm{2y}^{\mathrm{2}} =\mathrm{18}\:;\:\mathrm{y}=\pm\:\mathrm{3} \\ $$$$\left(\mathrm{x},\mathrm{y}\right)=\:\left(\pm\mathrm{7}\:,\pm\mathrm{3}\right) \\ $$$$\mathrm{then}\:\mathrm{3x}^{\mathrm{2}} \mathrm{y}^{\mathrm{4}} =\mathrm{3}×\mathrm{49}×\mathrm{81}=\mathrm{11907} \\ $$$$\:\mathrm{11907}\:=\:\mathrm{1082}×\mathrm{11}+\mathrm{5}=\mathrm{5}\left(\mathrm{mod}\:\mathrm{11}\right) \\ $$

Commented by Rasheed.Sindhi last updated on 20/Oct/22

Thank you sir,I′ve  corrected now.

$$\mathcal{T}{hank}\:{you}\:{sir},{I}'{ve}\:\:{corrected}\:{now}. \\ $$

Answered by greougoury555 last updated on 21/Oct/22

 2x^2 y^2 −7x^2 = 647−12y^2    x^2 (2y^2 −7)=605+42−12y^2    x^2 (2y^2 −7)=605+6(7−2y^(2))    x^2 (2y^2 −7)+6(2y^2 −7)=605   (2y^2 −7)(x^2 +6)=11×55    { ((2y^2 −7=11⇒y^2 =9)),((x^2 +6=55⇒x=49)) :}   ⇒3x^2 y^4  = 3×49×81=11097  ⇒((11097)/(11)) = 1082+(5/(11))

$$\:\mathrm{2}{x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{7}{x}^{\mathrm{2}} =\:\mathrm{647}−\mathrm{12}{y}^{\mathrm{2}} \\ $$$$\:{x}^{\mathrm{2}} \left(\mathrm{2}{y}^{\mathrm{2}} −\mathrm{7}\right)=\mathrm{605}+\mathrm{42}−\mathrm{12}{y}^{\mathrm{2}} \\ $$$$\:{x}^{\mathrm{2}} \left(\mathrm{2}{y}^{\mathrm{2}} −\mathrm{7}\right)=\mathrm{605}+\mathrm{6}\left(\mathrm{7}−\mathrm{2}{y}^{\left.\mathrm{2}\right)} \right. \\ $$$$\:{x}^{\mathrm{2}} \left(\mathrm{2}{y}^{\mathrm{2}} −\mathrm{7}\right)+\mathrm{6}\left(\mathrm{2}{y}^{\mathrm{2}} −\mathrm{7}\right)=\mathrm{605} \\ $$$$\:\left(\mathrm{2}{y}^{\mathrm{2}} −\mathrm{7}\right)\left({x}^{\mathrm{2}} +\mathrm{6}\right)=\mathrm{11}×\mathrm{55} \\ $$$$\:\begin{cases}{\mathrm{2}{y}^{\mathrm{2}} −\mathrm{7}=\mathrm{11}\Rightarrow{y}^{\mathrm{2}} =\mathrm{9}}\\{{x}^{\mathrm{2}} +\mathrm{6}=\mathrm{55}\Rightarrow{x}=\mathrm{49}}\end{cases} \\ $$$$\:\Rightarrow\mathrm{3}{x}^{\mathrm{2}} {y}^{\mathrm{4}} \:=\:\mathrm{3}×\mathrm{49}×\mathrm{81}=\mathrm{11097} \\ $$$$\Rightarrow\frac{\mathrm{11097}}{\mathrm{11}}\:=\:\mathrm{1082}+\frac{\mathrm{5}}{\mathrm{11}} \\ $$

Commented by Rasheed.Sindhi last updated on 21/Oct/22

Typo: 3×49×81=11907

$$\mathcal{T}{ypo}:\:\mathrm{3}×\mathrm{49}×\mathrm{81}=\mathrm{11907} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com